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On-line image mosaicing of live stem cells
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Abstract—Image mosaicing is a technique that permits to
enlarge the field of view of a camera. For instance, it is
employed to achieve panoramas with common cameras or even
in scientific applications, to achieve the image of a whole culture
in microscopical imaging. Usually, a mosaic of cell cultures is
achieved through using automated microscopes. However, this is
often performed in batch, through CPU intensive minimization
algorithms. In addition, live stem cells are studied in phase
contrast, showing a low contrast that cannot be improved further.
We present a method to study the flat field from live stem cells
images even in case of 100% confluence, this permitting to build
accurate mosaics on-line using high performance algorithms.

Index Terms—microscopy, image mosaicing, stem cells

I. INTRODUCTION

IN the past years, digital image processing has represented
the first attempt by biologists to exploit computer vision in

the life sciences. Nowadays, the increasing processing power
available at a low cost in every bio-lab has open the doors to
automated image analysis. In particular, it has been possible to
increase the field of view of microscopes by stitching together
more overlapping images of the same culture. This technique,
known as image mosaicing, is usually embedded in the soft-
ware tool provided with expensive automated microscopes.
Here, the motorized XY-tables can be used to create mosaicing
even from thousands of individually captured histological
images in [1], for instance to increase the significance of
the statistical measures or to study global properties of stem
cell cultures [2]. To our purposes, the mosaicing technique
can be roughly described as a two-stage approach. In the
first stage, each image is normalized with respect to uneven
illumination changes using a background image containing
no objects of interest. This stage is also known as flat field
correction. After that, common parts of different images are
used to derive the proper transformation between images so
to stitch them together. This is often accomplished by looking
in the foreground of the shared parts for common features
referring to the objects of interest. In addition, the foreground
is usually obtained by differencing each acquired image with
the background.

Accordingly, the flat field correction plays a crucial role
in order to have normalized images. Of course, the easiest
way to achieve a background is to acquire images when the
field of view is free of objects of interest [3]. However,
such an image could not be at one’s disposal and many
authors [4] simply take the light unbalance into account at
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the image difference stage. Then, some authors build a model
of the background using a generic polynomial approach [5],
exploiting a priori information regarding either the light field
of the specific microscope (such as the light pattern [1]) or the
cell properties (such as the border gradients in [6] or simply
the cell localization as in [7]). The work presented in [8]
addresses a non-parametric and general purpose approach to
build automatically a background image stemming from a
sequence of images where the background is somehow present.
However, this method cannot work in the presence of images
with lack of background.

The novelty of our approach consists in using the live stem
cells present in the field of view of the microscope as natural
markers to estimate the light field. In addition, it is worth
remarking that we have not any need to distinguish between
background and foreground (objects of interest). Accordingly,
we do not use any segmentation algorithm and we do not
need to know where the cells are. We just require to have
more images at our disposal where the cells are randomly
distributed.

This work is organized as follows. Sect. II describes the
stages of the image registration problem and the algorithm we
implemented. Extensive experimental results are discussed in
Sect. III, where two image sequences of live stem cells with a
confluence of 50% and 100% are analysed and the results are
compared with a background of “ground-truth”. Conclusions
are drawn in Sect. IV and some hints for future directions are
given.

II. THE IMAGE REGISTRATION PROBLEM

Image mosaicing in the field of microscopy can be per-
formed in different ways, depending on whether or not the
microscope has an automated stage holder. Modern automated
microscopes usually are available with the option of per-
forming image mosaicing by using known translation of the
motorized stage. Through this expensive option, the mosaic
is composed by stitching the images according to the known
relative positions. Otherwise the stage holder is positioned
manually: in this case, the mosaic can be built by image
registration techniques, exploiting a certain overlap between
the captured images. In any case, the problem is twofold:
aligning images from a geometric point of view and achieving
a seamless stitching even from abrupt changes in lighting con-
ditions. The former can be solved by a geometric registration,
whereas the latter requires a tonal registration.

A. Geometric registration

The model that governs the registration depends on the
physical properties of the imaged objects as well as on the kind
of motion the overall system undergoes. In case of microscopy,
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due to the geometry of the system, the mapping between points
on two consecutive images can be modeled with a translative
model.

After choosing the proper geometrical model, images need
to be aligned by detecting and matching features in a common
overlapping region. As far as the features to be tracked
in the acquired images are concerned, we have chosen the
Kanade-Lucas-Tomasi feature tracker (KLT) [9], [10], since
it can achieve a high accuracy and its computational cost is
compatible with the real-time constraints.

A fast initial guess, based on a phase-correlation ap-
proach [11], is computed to guide the KLT tracker in case
of large displacements of the holder position. The phase
correlation guess is used as a coarse estimation of the holder
displacement, this granting additional benefits in terms of
robustness and performance.

Once the tracker has found enough reference points in the
common region, the transformation matrix H is estimated
according to the given model by using a robust estimator
(RANSAC [12]).

The proposed image mosaicing algorithm uses a frame-
to-frame (F2F) registration strategy where differences among
temporally adjacent frames are meant to be small in both
geometric distortions artifacts and lighting conditions, hence
feature correspondences are more reliable, thus resulting in a
highly accurate alignment.

B. Flat field correction

Once the geometric image registration problem is solved,
tonal misalignment between the images composing the mosaic
can still be present. In particular, differences in lighting
condition may affect either the brightness or the color content
of subsequent images. Also, since the light field of the
microscope is not perfectly flat, a vignetting effect may prevent
a seamless stitching of the images composing the mosaic. In
order to overcome these problems, a flat field correction is
applied to each processed image. Here we perform the flat
field correction be means of a light field estimation achieved
by taking into account the whole image content, disregarding
between background and foreground. To this purpose, our
approach just requires that there are more images showing a
different random spatial distribution of live cells, without any
bound to the cells’ confluence, that can be even of 100%. In
fact, since all the cells have a similar photometric aspect, they
act as natural uniform markers whose changes in colors (or
gray levels) mostly depend on their position within the field
of view. In practice, the light field estimation algorithm works
by analyzing the first N images of the sequence, through the
following three steps:

1) Estimation of a robust image B = median(Ii), i =
{1..N}by a temporal median filter of each pixels in the
sequence.

2) Averaging filter on B
3) Light field estimation LF = B −min(B)

The first step is needed since it detects the most common
pixel values in each position while rejecting outliers, due to
the presence of moving residue of the cells on the culture

medium. The second step is used to smooth the estimated
background image, whereas the third step estimates the final
light field as the topmost structure of the background. The
flat field correction applied to each image I is then IFF =
I − LF +mean(LF ).

C. Image warping

After that geometric registration and tonal alignment be-
tween the images are computed, the mosaic is composed by
warping images into a common reference frame according to
the geometric transformations H . Differently from what that
common use is, we do not employ blending mask so to manage
to better evaluate the robustness of our method in the stitching
regions in terms of geometric and tonal alignment. Images
are warped into the mosaic frame at a sub-pixel level through
bilinear interpolation by simply overwriting all the transformed
pixels.

III. EXPERIMENTAL RESULTS

The test bed is composed of a Nikon Eclipse TE2000-U
inverted microscope, not equipped with a motorized precision
stage. Two sequences of images taken from Mesenchymal
Stem Cell (MSC) cultures at a confluence level of 50% (S1)
and 100% (S2) respectively, are acquired manually by moving
the slider of the stage holder and given in input to our
algorithm, which extracts the light field and updates in real-
time the image mosaics. The microscope imaging mode is set
to phase contrast acquisition, and the acquired images show a
very poor contrast due to the MSC cultures being analyzed.

The tonal alignment algorithm on the set of images of
sequence S1 produces a light field background shown in
Figure 1(a).

(a) (b)

S1 (a) and the corresponding ground-truth (b).

In Figure 1(b), the corresponding ground-truth light field is
shown. The latter has been achieved by averaging a sequence
of empty field acquisitions on a specimen containing nothing
but the culture medium (i.e. without any cell). As it can be
seen, the algorithm is able to reproduce the same light field
background even in the presence of foreground objects.

As for the sequence S2, an image is shown in Figure 2(a)
together with the extracted light field (b). Here we can
appreciate the effects of the light field compensation performed
by our algorithm, in spite of the cells density being very high.

Fig. 1: The light field extracted from images of sequence
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(a) (b)

corresponding extracted light field (b).

without tonal registration.

In Figure 3, the resulting mosaic referring to the sequence
S1, and generated by our registration method without using
the tonal alignment algorithm, is shown.

As we can see, the effects of the uneven light field is clearly
visible. Composing the images without the flat field correction
emphasizes the seam and the vignetting effects preclude a
pleasant visualization of the composed cell culture. However,
we can exploit these artifacts to visually appreciate how
the images’ geometric transformations have been correctly
computed by our registration algorithm. Cell structures on
the image borders appear correctly aligned from a geometric
point of view, leading to a mosaic free of visual distortions.
To further address the quality of the registration algorithm
from a numerical point of view, we quantify the registration
performances by evaluating a proper metric on a Region of
Interest (ROI) of the mosaic: the Mean Square Error (MSE)
defined according to Eq. 1:

MSE =

∑
x

∑
y(I(x, y)−R(x, y))2

N
(1)

where R is the ROI of the original image unaffected by
registration artifacts, I is the corresponding ROI of the mosaic
and N is the number of pixels in the ROI.

The result on the same set of images mosaiced by using
the flat field correction algorithm is shown in Figure 4. As
we can see, by applying the tonal alignment through the

of the stem-cells sequence.

flat field correction a seamless stitching between the images
is produced. This is an important aspect to be considered
when biologists need to visually evaluate the cells culture.
Nevertheless, producing a tonal aligned mosaic is also a crucial
aspect when the output image have to be further analyzed
by image analysis measurement tools, since fictitious image
gradients along the stitching regions, or simply a global
thresholding operation, may produce unwilling results.

Table I resumes the results referring to the proposed mo-
saicing algorithm, expressed in terms of MSE values when
evaluated over a ROI of overlapping regions on the first frame.

Table I: MSE results for sequence S1

Sequence MSE
S1 w/o tonal 21.27
S1 with tonal 14.05

It is worth noticing how the evaluated metric produces a
smaller value when using our flat field correction algorithm: a
MSE of 21.27 is attained by using geometric alignment only,
whereas a MSE of 14.05 is achieved with both geometric and
tonal registrations.

IV. CONCLUSIONS

We have presented a mosaicing algorithm for live stem cells,
capable to work on-line by using local image registration. The
main problem faced in this work has been that of recovering
automatically the microscope’s light field, in those cases where
either an empty field could not be available or the image
does not even show any background region to be used as a
partial reference. An innovative algorithm has been devised
to recover the microscope’s light field by exploiting the stem
cells as natural markers. The light field thus attained is then
used to correct the images acquired so that they show even
illumination. This permits to eliminate the seam signs in the
mosaics, in correspondence of the composing image borders.
Experimental results have been successfully carried out using
images of live stem cell cultures at difference confluences,
even considering a value of 100%.

Fig. 2: An image extracted by sequence S2 (a) and the

Fig. 3: A mosaic of 4 frames belonging to sequence S2,

Fig. 4: A mosaic with tonal registration, made of 4 frames
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We are now examining more kinds of cells, in order to
assess to feasibility to apply our method to other cells as well,
or or biological samples.
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