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On-line Identification of Continuous-time

Hammerstein Systems via RBF Networks

and Immune Algorithm
Tomohiro Hachino, Kengo Nagatomo, and Hitoshi Takata

Abstract—This paper deals with an on-line identification method
of continuous-time Hammerstein systems by using the radial basis
function (RBF) networks and immune algorithm (IA). An unknown
nonlinear static part to be estimated is approximately represented
by the RBF network. The IA is efficiently combined with the
recursive least-squares (RLS) method. The objective function for the
identification is regarded as the antigen. The candidates of the RBF
parameters such as the centers and widths are coded into binary bit
strings as the antibodies and searched by the IA. On the other hand,
the candidates of both the weighting parameters of the RBF network
and the system parameters of the linear dynamic part are updated
by the RLS method. Simulation results are shown to illustrate the
proposed method.

Keywords—Continuous-time System, Hammerstein System, On-
line Identification, Immune Algorithm, RBF network.

I. INTRODUCTION

MOST practical systems  have   inherently nonlinear char-

acteristics such as saturation or dead-zone and often

have time-varying dynamics. The development of accurate

identification method for such systems is of great importance

for precise analysis, control design or prediction. One of

typical approaches for nonlinear system identification is use

of the block oriented models such as Hammerstein model

[1]–[7]. The Hammerstein model is expressed by a mem-

oryless nonlinear static part followed by a linear dynamic

part and has many advantages for control design or stability

analysis due to the model structure [1]. Several identification

methods have been proposed for the Hammerstein models by

using correlation theory [2], neural networks [3], orthogonal

functions [4], polynomials [5], piecewise linear model [6],

automatic choosing function model [7], and so on. However

these identification methods are based on the discrete-time

model. Generally, parameters in the discrete-time model do

not directly correspond to the physical values, therefore the

identification algorithm based on the continuous-time model

is often desirable to carry out analysis or control design

for real systems successfully. Moreover many conventional

identification schemes for Hammerstein models are essentially

off-line and not feasible for time-varying systems.
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In this paper an on-line identification method of continuous-

time Hammerstein systems is proposed by using radial basis

function (RBF) networks and immune algorithm (IA). The IA

is an optimization technique which is inspired by the body’s

immune systems [8]–[10]. Comparing with the genetic algo-

rithm, the IA can maintain the diversity of gene because it has

a mechanism to promote and suppress antibodies production

by introducing of the affinity between antibodies. The IA

has also a memory mechanism where an effective solution

(antibody) is stored in the memory cell and operates quickly

when a similar antigen reappears. In the proposed method,

the IA is efficiently combined with the recursive least-squares

(RLS) method in order to track the time-varying system

parameters and nonlinear function. The objective function for

the identification is regarded as the antigen. The candidates

of the centers and widths of the RBF are coded into binary

bit strings as the antibodies and searched by the IA. On the

other hand, the candidates of both the weighting parameters

of the RBF network and the system parameters of the linear

dynamic part are updated by the RLS method.

This paper is organized as follows. In section II the problem

is formulated. In section III on-line identification method using

the RBF network model is presented where the adjusting

parameters, i.e. the centers and widths of the RBF are fixed.

In section IV, the identification algorithm combining the RLS

method with the IA is proposed. In section V numerical

simulation is carried out for the case that the objective system

changes stepwisely in time. Finally some conclusions are given

in section VI.

II. STATEMENT OF PROBLEM

Consider a single-input, single-output continuous-time non-

linear system described by the Hammerstein model shown in

Fig.1:





n∑

i=0

aip
n−i

y(t) =

r∑

j=0

bjp
r−j

x(t) (a0 = 1, n ≥ r)

x(t) = f(u(t))
(1)

where u(t) and y(t) are input and output signals, respectively.

x(t) is intermediate signal that is not accessible for measure-

ment. f(·) is unknown nonlinear function. p denotes a differen-

tial operator. A(p) =
∑n

i=0
aip

n−i and B(p) =
∑r

j=0
bjp

r−j

are the denominator and numerator polynomials of the linear

dynamic part, respectively. n and r are assumed to be known.

The problem is to identify the system parameters { a i } and
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Fig. 1. Continuous-time Hammerstein model

{ bj } of the linear dynamic part, and nonlinear static function

f(·) on line, from input and output data.

III. IDENTIFICATION MODEL

The following state variable filter F (p) is introduced in

order to evaluate higher order derivatives of signals:

F (p)=
1

pq+γ1p
q−1+· · · · · ·+γq

(q>n). (2)

Multiplying both sides of (1) by F (p) yields






n∑

i=0

aip
n−i

y
f (t) =

r∑

j=0

bjp
r−j

x
f (t)

x
f (t) = F (p)f(u(t))

(3)

where {
y

f (t) = F (p)y(t)
x

f (t) = F (p)x(t).
(4)

When F (p) has a transport lag characteristic, the filter F (p)
and the nonlinear function f(·) are exchangeable [11], [12]

and it follows that F (p)f(u(t)) = f(F (p)u(t)) = f(uf (t)).
Thus (3) becomes






n∑

i=0

aip
n−i

y
f (t) =

r∑

j=0

bjp
r−j

x
f (t)

x
f (t) = f(uf(t)).

(5)

In general the Butterworth filter has approximately a transport

lag characteristic for frequencies ω ≤ ωc, where ωc is the

cutoff frequency. Therefore, the Butterworth filter modified by

the all-pass filter [12] is utilized as the delayed state variable

filter F (p) in this paper.

The unknown nonlinear function in (5) is represented by

the RBF network depicted in Fig.2 as

f(uf(t))=w0+

M∑

i=1

wiφi(u
f(t))+ε(t), (6)

where

φi(u
f (t))=exp { −(‖uf(t)−ci‖

2
/d

2

i )} (7)

is the Gaussian function, M is the number of the RBF. ci and

di are the ith center and width of the RBF, respectively. w i is

the weighting parameter associated with the ith RBF, and ‖ ·‖
denotes the Euclidean norm. ε(t) is an approximation error.

Substituting (6) into (5) yields the following identification

model:

p
n
y

f (t) = z
T(t)θ + v(t) (8)

Fig. 2. RBF network

where v(t) =
∑r

j=0
bjp

r−j
ε(t) is an equation error, and






θ = [θT

a , θ
T

b0
, θ

T

b1
, · · · , θT

br
, θw0

]T

θa = [a1, a2, · · · , an]T

θbi
= [θbi,1

, θbi,2
, · · · , θbi,M

]T

= [biw1, biw2, · · · , biwM ]T

θw0
= [brw0]

z(t) = [zT

a (t), zT

b0
(t), zT

b1
(t), · · · , zT

br
(t), 1]T

za(t) = [−p
n−1

y
f (t),−p

n−2
y

f (t), · · · ,
−y

f(t)]T

zbi
(t) = [pr−i

φ1(u
f (t)), pr−i

φ2(u
f(t)), · · · ,

p
r−i

φM (uf (t))]T.

(9)

Applying the RLS method to (8), the unknown parameter

vector θ can be estimated recursively as follows:

θ̂(k) = θ̂(k − 1) + L(k)ǫ(k)

ǫ(k) = p
n
y

f (k) − z
T (k)θ̂(k − 1)

L(k) =
P (k − 1)z(k)

1 + zT (k)P (k − 1)z(k)

P (k) = P (k − 1)−
P (k − 1)z(k)zT (k)P (k − 1)

1 + zT (k)P (k − 1)z(k)

(10)

where kT (T : sampling period) is written as k for simplicity.

Thus the weighting parameters of the RBF are estimated by
{

[ŵ1(k), ŵ2(k), · · · , ŵM (k)]
T

= θ̂br
(k)

ŵ0(k) = θ̂w0
(k)

(11)

putting b̂r(k) = 1 without loss of generality. Therefore the

nonlinear static function is composed by (11) as

f̂(uf (k))= ŵ0(k)+

M∑

i=1

ŵi(k)φi(u
f (k)). (12)
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The denominator parameters of the linear part have been

already obtained as θ̂a(k), and the numerator parameters of

the linear part are estimated by using the linear least-squares

technique again as

b̂i(k) =

M∑

j=1

θ̂br,j
(k)θ̂bi,j

(k)/

M∑

j=1

θ̂
2

br,j
(k) (13)

(i = 0, 1, · · · , r − 1).

IV. ON-LINE IDENTIFICATION BY RLS METHOD AND IA

The accuracy of the above on-line identification algorithm

greatly depends on the adjusting parameters of the RBF, i.e. the

centers and widths of the RBF. In this section Ω = [{ ci } , { di } ]
is determined on line by using the IA. The objective function

for the identification, mean square of the equation error, is

regarded as the antigen. The candidates of Ω are coded into

binary bit strings as the antibodies and searched by the IA.

The candidates of both the weighting parameters of the RBF

network and the system parameters of the linear part are

updated by the RLS method mentioned in section III.

The proposed one-line identification algorithm is as follows:

step 1: Initialization

Generate an initial population of antibodies which consists

of Q binary bit strings Ω
a
l [0] (l = 1, 2, · · · , Q) and an initial

population of memory cells which consists of R binary bit

strings Ω
m
l [0] (l = 1, 2, · · · , R) randomly.

Set the initial value θ̂(0) and P (0) for the RLS method.

Let the generation index of the IA g = 0 and the time step

index k = 1.

step 2: Decoding

Decode Q strings into real values Ω̃
a
l [g] for antibodies and

R strings into real values Ω̃
m
l [g] for memory cells.

step 3: Filtering

Calculate u
f(k), y

f (k), and their higher order derivatives

by using the delayed state variable filter.

step 4: Construction of the signal vectors

Calculate the signal vectors z
a
l (k) and z

m
l (k) by using

Ω̃
a
l [g] and Ω̃

m
l [g], respectively.

step 5: Estimation of θ̂

Update θ̂
a
l (k) and θ̂

m
l (k) using the RLS method in (10).

step 6: Fitness value calculation

Calculate the values of the objective function (antigen) for

both antibodies and memory cells by using Ω̃
a
l [g] and Ω̃

m
l [g],

and corresponding θ̂
a
l (k) and θ̂

m
l (k):

J
a
l (Ω̃a

l [g], θ̂a
l (k)) =

1

W

W−1∑

j=0

{
p

n
y

f (k − j)−

z
a
l
T(k − j)θ̂a

l (k)
}2

(l = 1, 2, · · · , Q)

(14)

J
m
l (Ω̃m

l [g], θ̂m
l (k)) =

1

W

W−1∑

j=0

{
p

n
y

f (k − j)−

z
m
l

T(k − j)θ̂m
l (k)

}2

(l = 1, 2, · · · , R),

(15)

where W is the time window length.

Compute the affinity between the antigen and each of

antibodies, i.e. the fitness value of the antibody Ω
a
l [g] and

θ̂
a
l (k):

F
a
l = 1/J

a
l (l = 1, 2, · · · , Q) (16)

and the affinity between the antigen and each of memory cells,

i.e. the fitness value of the memory cell Ω
m
l [g] and θ̂

m
l (k):

F
m
l = 1/J

m
l (l = 1, 2, · · · , R). (17)

step 7: Determination of the estimated model

Determine the estimated model at the current time step k

with Ω̂[g] = [{ ĉi[g]} , { d̂i[g]} ] which has the best fitness value

among the antibodies or memory cells and corresponding θ̂(k)
and f̂(u(k)).
step 8: Repetition for the RLS method

If k �= λG (λ = 1, 2, · · ·) where G is prespecified integer,

set the time step index k = k + 1 and go to step 3.

step 9: Density calculation

Calculate the affinity ayl,w between the antibody Ω
a
l [g] and

Ω
a
w[g]

ayl,w =
1

1 + Hl,w

(18)

where Hl,w is the normalized Hamming distance between two

antibodies.

Compute the density C
a
l for each antibody Ω

a
l [g] among

the population of antibodies:

C
a
l =

1

Q

Q∑

w=1

acl,w

acl,w =

{
1 ayl,w ≥ Tac1

0 otherwise

(19)

where Tac1 is the threshold for the density calculation.

step 10: Differentiation into the memory cells

Differentiate the best Ω̂[g] into the memory cell and remove

a randomly selected memory cell from the population of the

memory cells, if the maximum affinity between Ω̂[g] and each

of the memory cells is below the threshold Tac2.

step 11: Promotion and suppression for antibody produc-

tion

Calculate the expected value for each of antibody to survive

to the next generation:

E
a
l = F

a
l /C

a
l (l = 1, 2, · · · , Q). (20)

Reproduce each of antibodies in proportion to its expected

value. Each of antibodies is reproduced with the probability of

E
a
l /

∑Q

j=1
E

a
j , where the worst 30% antibodies are exchanged

with randomly generated antibodies.

step 12: Crossover

Pick up two antibodies randomly and decide whether to

cross them over or not according to the crossover probability

Pc. If a crossover required, exchange genes at a crossing

position selected randomly.

step 13: Mutation

Alter a gene of antibody (”0” or ”1”) according to the

mutation probability Pm.

step 14: Repetition for the IA

Increase the generation index as g = g + 1 and the time

step index as k = k + 1, and go to step 2.
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V. ILLUSTRATIVE EXAMPLE

Consider a system described by the following Hammerstein

system:
{

ÿ(t) + a1ẏ(t) + a2y(t) = b0x(t)
x(t) = f(u(t))

(21)

where the system parameters of the linear dynamic part and

the nonlinear static part change stepwisely as shown in Table

I.

The output signal is generated by a random signal of band-

pass 1.0[rad/s]. The sampling period is taken to be T = 0.25[s]

and the identification is carried out until t = 400[s]. The

third-order Butterworth filter modified by the all-pass filter

is utilized as the delayed state variable filter, whose cutoff

frequency is ωc = 5.0[rad/s]. The number of the RBF is

M = 4. The time window length in (14) and (15) is taken

to be W = 50. G in step 8 of section IV is 50. The initial

values for the RLS method are chosen as follows:

θ̂(0) = 1

P (0) = 103
I (I: unit matrix).

The design parameters of the IA are given as follows:

the number of antibodies Q = 60
the number of memory cells R = 30
crossover probability Pc = 0.8
mutation probability Pm = 0.05
search range of the RBF centers

[cmin, cmax] = [−2.81, 3.19]
search range of the RBF widths

[dmin, dmax] = [0.01, 20]
threshold Tac1 = 0.70, Tac2 = 0.95.

Fig.3 shows the true system parameters a1 and a2, and

estimated system parameters â1 and â2. Since the estimated

model is normalized by b̂0, estimation result of b0 is omitted

in Fig.3. It can be confirmed that the proposed method can

track the time-varying system parameters well.

The estimated nonlinear static functions at the time t =
100, 200, 300, and 400[s] are depicted in Fig.4. Clearly the

estimated nonlinear functions at every step are very close to

the true nonlinear functions on the data region.

TABLE I
SYSTEM PARAMETERS AND NONLINEAR FUNCTION

t [s] a1 a2 b0 f(u(t))
[0, 100] 1.20 0.80 1.0 0.5u(t) + u2(t)

(200, 300]

(100, 200] 3.0 1.50 1.0 u(t) + 0.5u3(t)
(300, 400]

VI. CONCLUSIONS

In this paper we have presented an on-line identification

method of continuous-time Hammerstein systems by the RBF

networks and IA. The IA is efficiently combined with the RLS

method in order to track the time-varying system parameters of

the linear dynamic part and nonlinear static part. Simulation

results show that the propose method can be easily applied

to the continuous-time Hammerstein systems in case that the

0 100 200 300 400

0

1

2
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t

^
a

1
, 

a
1

â1

a1

(a) a1

0 100 200 300 400
0

1

2

t

^
a

2
, 
a

2

â2

a2

(b) a2

Fig. 3. True system parameters and estimated system parameters

system parameters of the linear dynamic part and nonlinear

static part change stepwisely in time. An examination for the

identification of noisy systems will be one of the future works.
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