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Abstract—Probability-based identity disclosure risk 

measurement may give the same overall risk for different 
anonymization strategy of the same dataset. Some entities in the 
anonymous dataset may have higher identification risks than the 
others. Individuals are more concerned about higher risks than the 
average and are more interested to know if they have a possibility of 
being under higher risk. A notation of overall risk in the above 
measurement method doesn’t indicate whether some of the involved 
entities have higher identity disclosure risk than the others.  In this 
paper, we have introduced an identity disclosure risk measurement 
method that not only implies overall risk, but also indicates whether 
some of the members have higher risk than the others. The proposed 
method quantifies the overall risk based on the individual risk values, 
the percentage of the records that have a risk value higher than the 
average and how larger the higher risk values are compared to the 
average. We have analyzed the disclosure risks for different 
disclosure control techniques applied to original microdata and 
present the results. 
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I. INTRODUCTION 
ANY organizations hold a huge amount of data 
containing information on individual unit such as a 

person, a company, an institution, etc. These data, called 
microdata [1], hold valuable information which can be 
unfolded only through statistical analysis on the data. 
Therefore, often parts of these data are shared with third 
parties for research purposes, data analysis or application 
testing to discover the important information in them. On the 
other hand, shared microdata containing personal information 
can become a major source of privacy violation if appropriate 
privacy protection technologies are not applied on the data 
before sharing with others. 

Three types of attributes of microdata are under 
consideration in the context of this paper: (i) quasi-identifiers 
(K), (ii) sensitive attributes (S) and (iii) identifiers (I). Quasi-
identifiers are the attributes that in combination can be used to 
identify an individual. E.g., country, postal code, gender, age, 
date of birth, etc. Sensitive attributes contain sensitive 
information about an entity. E.g., salary, diseases, political 
views, etc. Identifiers are the attributes that explicitly identify 
individuals. E.g., Social Security Number, passport number, 
complete name etc.  
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Third parties may get microdata from data collectors for 
data mining and research. Some organizations may also sell 
microdata to commercial data brokers [2][3]. The shared 
microdata may contain quasi-identifier attributes and sensitive 
information (e.g. disease names) of entities. Privacy protection 
technologies re-arrange or modify the data in such a way that 
the subject individuals cannot be identified from the data. 
Such modification, known as data masking or anonymization, 
is more often than not a legal requirement [2]. Typically, 
names and other identifying information are removed from 
original records before being shared with others. Third parties 
usually utilize microdata through statistical analysis.  

Though the identification attributes are removed from the 
data before sharing with third parties, there still remains the 
possibility of identification threats in the anonymous data 
through quasi-identifiers. A malicious user, who has access to 
the shared microdata, can obtain publicly available 
identification databases (e.g., voter lists) containing the same 
quasi-identifier attributes as in the shared microdata and can 
match them with the shared records to potentially re-identify 
and thus reveal sensitive information about the entities.  
 
Sensitive 
Attrib (S) 

Quasi-
Identifier (K) 

 Quasi-Identifier 
(K) 

Identifier (I) 

Disease Zip 
Code

G
en

Y. of 
Birth

 Zip 
Code 

G
en 

Y. of 
Birth 

Name 

Cancer 2314 M 1959  2314 M 1959 John Smith  
Strep 2314 F 1955  2432 M 1962 Alan Smith  
Diarrhea 2342 M 1959  2314 F 1965 Alice Brown 
Gallstones 2319 F 1966  2342 M 1959 Hercules Green 
Gastric 
Ulcer 

2323 F 1987  4249 F 1955 Marie Kirkpatrick 

Pneumonia 2314 M 1975  4723 M 1978 Albert Blackwell
Flu  2321 F 1975  4249 F 1975 Gill Stringer  
Meningitis 2324 M 1967  2342 M 1964 Douglas Henry 
Diabetes 2310 M 1961  2314 M 1975 Bill Nash  
Allergies 2337 M 1974  4237 F 1942 Alicia Fred 
Cancer 2345 F 1978  2323 F 1982 Leslie Hall  
Cancer 2328 F 1961  2321 F 1973 Freda Shields 

(a) Shared microdata  4723 F 1959 Beverly 
McCulsky 

 (b) Identification database (publicly 
available) 

Fig. 1. Example of some shared microdata (hospital record) and 
identification database (e.g., voter list). Record linking operation can 

determine who was diagnosed for what disease. 
Fig. 1 illustrates such matching and identification using 
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publicly available identification databases. The malicious user 
can identify and associate sensitive information when the 
same quasi-identifiers are present in both the shared microdata 
and the identification database. For example, by matching 
quasi-identifiers between the two data tables, the user can find 
out that “John Smith” has been diagnosed for “Cancer”. 

The original data holder (data owner) seeks to limit the risk 
that malicious users, hereafter called intruders, are able to 
identify sampled units in the shared data. In order to protect 
linking records between the released data and records from 
external databases, several statistical disclosure control 
techniques such as global recoding [5][6], local suppression 
[7], microaggregation [8], sampling [9], simulation [10], 
adding noise [11], rounding [12], post randomization method 
[13], data swapping [14] etc. were proposed in literature 
Reference [1] presents a survey of all those methods. To 
increase confidentiality, more than one method is often 
applied in the disclosure control process. We will call the final 
microdata as masked or shared microdata [14]. 

The data owner can assess the strength of an anonymization 
by estimating the disclosure risk of the data. In very broad 
terms, disclosure risk is the risk that a given form of 
disclosure will be encountered if a masked microdata is 
released. Two types of disclosure, namely, identity disclosure 
and attribute disclosure are discussed in literature. Identity 
disclosure refers to the identification of an entity (such as a 
person or an institution) and attribute disclosure refers to an 
intruder finding out something new about the target entity 
[15]. In this paper, we focus on identity disclosure.  

Identity disclosure risk assessment metrics have been 
developed by many researchers based on mainly: (1) number/ 
percentage of unique records and (2) probability of 
identification. Because of the privacy acts, it has been a 
common practice that microdata are shared with third parties 
after anonymization, which usually results in “few or no 
unique records” in the anonymous microdata. Thus, the risk 
measurements based on the percentage of unique records are 
no longer in common use. Instead, probability-based risk 
measurement methods have been well accepted because of its 
considerations of both unique records and non-unique records 
in the assessment.  

A. Motivations 
The overall risk (or the risk for the whole shared microdata) 

can be expressed with a single numerical value that is 
calculated as the average of the risks of all entities. However, 
in these measures, the same overall risk can be resulted from 
different anonymization of the same entities that create 
different group sizes of the records. The risk value calculated 
from a uniform grouping (risk distribution), where every 
entity has the same risk, can be the same as the risk value 
calculated from a non-uniform risk distribution (where some 
entities have higher risks than the others). Thus, a notation of 
overall risk in the existing probability-based metrics doesn’t 
indicate whether some of the involved entities have higher 
risks than the others. So, existing metrics do not fully capture 

the risk distributions among the entities. For example, an 
overall risk value of 20 x 0.4 /20 = 0.4 calculated from a risk 
distribution of “0.4 risks for all 20 entities” will not create the 
same feeling in the involved people as in the case of the same 
overall risk value of (0.1x10 + 0.7x10)/20=0.4 calculated 
from a risk distribution of “0.1 risks for 10 entities and 0.7 
risks for the rest 10 entities”. Individuals are more concerned 
about higher risks and are more interested to know if they 
have a possibility of being under higher risk than the average. 
Also, the data owner is interested to know if the applied 
anonymization is at its optimal point for the same overall risk. 
Thus, we need a metric that not only expresses the overall 
risk, but also conveys information about the risk distribution 
among the members.  

B. Our Contributions 
In this paper, first we analyze all of the possible 

identification risk distributions among the members for a fixed 
average risk of a given microdata. From the analysis, we 
formulate the distribution of identification risk that is most 
unbalanced among the members and the distribution of 
identification risk that is most balanced among the members. 
Then we describe the algorithm of our proposed method for 
measuring disclosure risk that not only indicates the average 
risk value but also captures whether some of the members 
have higher risk than the others. The proposed method 
quantifies the overall risk by considering (1) the individual 
risk values, (2) the percentage of the records that goes above 
the average and (3) how larger the higher risk values are 
compared to the average. A notion of overall risk value in our 
proposed metric will help (i) the involved individual to feel 
the real risk including the average of low and high risks and 
the possibility of being in higher risk compared to the rest, and 
(ii) data releasing authorities to realize whether their 
anonymization is optimized for a given average risk. The data 
releasing authorities can decide whether their anonymous data 
is in the best possible state for a fixed average risk. The 
proposed method is applicable in all areas involving data 
privacy: from the customer’s shopping behavior data of a 
shopping mall, to the network user’s activity data of an 
organization, to the patient’s health records of a hospital. 
Finally, we evaluate our method by using simulated data and 
compare with existing measurement schemes. 

The remainder of this paper is organized as follows: Section 
II illustrates related disclosure risk measurement methods 
proposed previously by other authors. Section III briefly 
describes a framework for microdata disclosure control and 
makes assumptions about the external information known by a 
presumptive intruder. Section IV describes and analyzes 
probability-based risk measurement methods. Section V 
describes the proposed identity disclosure risk measurement 
method and also presents the algorithm. Section VI illustrates 
experimental results created with simulated data and Section 
VII concludes the paper. 
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II.  PREVIOUS WORKS 
Considerable research on disclosure risk assessment [1][9] 

[10][15]-[42] has resulted in a variety of proposed disclosure 
risk assessment methods. Many of the proposed disclosure 
risk measures are some function of the number of population 
or sample unique. These include, among others the measures 
proposed in [18] - [25]. One of the most intuitive ways is to 
count the number of unique records with respect to a limited 
set of attributes [43], called “keys” in disclosure avoidance 
literature [1]. References [16] and [9] define disclosure risk as 
a proportion of sample unique records that are population 
unique. Reference [17] defines a new measure of disclosure 
risk as the proportion of correct matches amongst those 
records in the population, which match a sample unique 
masked microdata record.  

Uniqueness is relevant because population unique generally 
have higher risks of identification disclosure than non-unique 
ones. Indeed, it has been suggested that uniqueness is a 
necessary condition for identification [21]. Substantial work 
has been done on estimating the number of population unique 
from a sample of data when the population follows a 
particular distribution such as Poisson-Gamma [19], Dirichlet-
multinomial [44], and negative-binomial [22]. The paper in 
reference [20] has proposed a procedure that is not dependent 
on a parametric statistical distribution. Reference [15] defines 
disclosure risk as matter of perception. While useful, 
population uniqueness does not account for the nature of the 
information possessed by the intruder. For example, when the 
intruder knows a particular target is in the sample and knows 
values of that target's record, the intruder can identify the 
target when it is a sample unique, even if it is not a population 
unique. 

Other authors have proposed that a linking attempt is 
carried out between released records with target records, 
either by direct matching using external databases [26][27] or 
indirect matching using the existing database [28][45][46] 
[38]. In both approaches, the organization essentially mimics 
the behavior of an intruder trying to match released records to 
target records. Recent publications [28]-[36] assess risk based 
on probability of linking the released records with external 
data by considering the attackers’ knowledge and taking 
possible external data sources into account. 

These approaches address many of the shortcomings of 
relying on population or sample unique. They can permit one 
to account for varying degrees of intruder knowledge, are 
equally appropriate for continuous and categorical data, and 
can be applied to assess the effects of statistical disclosure 
limitation techniques.  

III. GENERAL FRAMEWORK FOR MICRODATA  
Microdata can be represented as a single data matrix where 

the rows correspond to the units (individual units) and the 
columns to the attributes (as name, address, income, sex, etc.) 
[18]. The shared microdata consist of a set of n records with 
values from two types of attributes: Quasi-identifier (K) and 

Sensitive (S) attributes. Identifier attributes, such as Name and 
SSN, can be used to identify a record and thus are removed 
from the microdata before sharing with third parties. Quasi-
identifier attributes such as Zip Code and Age, cannot identify 
a record alone, but may do so when several quasi-identifiers 
are combined and linked with external data sources containing 
identifiers. Privacy concern arises only if the microdata 
contains sensitive information about the related entities. 
Sensitive attributes, such as disease name, must be protected 
from being associated with individual identity through a 
disclosure control mechanism.  

We represent the shared microdata (SM) as a matrix with 2 
partitions that correspond to two categories of attributes: 
quasi-identifiers (K) and sensitive attributes (S). Each row 
corresponds to an individual entity and the columns represent 
one or more quasi-identifier attributes (that can be used to 
identify individual) and one or more sensitive attributes. 
Therefore:  

]|[ SKSM =  (1) 
where,  

K=K1, K2, …, Kp i.e., K=[kij] of order n × p 
S= S1, S2, …, Sq i.e., S=[sij] of order n × q. 
 
Due to applied disclosure control methods, such as 

sampling and simulation, the number of records in the shared 
microdata (n) differs from the number of records in initial 
microdata (N). The corresponding attribute values may also 
differ due to perturbative methods (such as global recoding, 
microaggregation, data swapping and so on) used in 
disclosure control processes.  

Disclosure of confidential information usually occurs if the 
intruder has some related external information which is 
difficult to know or anticipate. Therefore, we need to make 
assumptions about this knowledge to calculate the disclosure 
risk. The assumption we make about the intruder is that an 
intruder has the quasi-identifiers along with the confidential 
information (from the shared microdata) and identifiers along 
with the quasi-identifiers (from external data sources) values 
for population. Our assumption also considers that the key 
attributes are discrete; the identification database has all of the 
data records corresponding to the entities in the shared 
microdata. Though the population unique and the sample 
unique may not be equal, we consider sample uniqueness for 
measuring identity disclosure. 

Based on our previous assumptions, external information 
available to an intruder is:  

]|[ IKExt =  (2) 
  

We note that shared microdata can be expressed as a 
projection on quasi-identifiers and confidential attributes of 
initial microdata:  

 
)(, IMSM SKΠ=  (3) 

 
We group the data from shared microdata based on their 
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quasi-identifier values. All of the quasi-identifiers are 
combined and considered as a single combination attribute. 
Therefore, in each group we will include records with the 
same values for their quasi-identifier attributes. We define the 
following:  

N – the number of entities in the population 
n – the number of entities in the shared microdata 
G – the number of groups 
Ak – the set of elements from the k-th group ∀k, 1 ≤ k ≤ G. 
 |Ak| = i, for all k = 1, ..,G, ∀i, 1 ≤ i ≤ n. 
Gi – the number of groups with the group size i.  
ni – the number of records in all of the groups of size i.  
Thus, we have the following relations:  

niGin ii ...1, =∀×=  (4) 

∑ ∑
= =

==
n

i

n

i

i
i i

n
GG

1 1
 (5) 

∑ ∑
= =

×==
n

i

n

i
ii Ginn

1 1
 (6) 

Let us consider an example sample data consisting of nine 
data records with different quasi-identifier values as shown in 
Fig. 2. The “Rec No” column was added for the convenience 
in referring to a specific record with its corresponding number 
and it is not a part of the microdata. The data are grouped into 
different groups based on the quasi-identifier values (K). The 
records with the same quasi-identifier values are grouped 
together. Different variable values are indicated on the right 
side of Fig. 2. By A1={1} we mean that the record no. 1 is in 
the first group. 

 
 SM 

Rec No K S 
1 a Cancer 
2 b Strep 
3 c Diarrhea 
4 c Gallstones  
5 b Gastric 

Ulcer 
6 d Pneumonia 
7 e Flu  
8 e Meningitis 
9 e Diabetes 

 
Fig. 2 Example sample records and their grouping according to the 

microdata framework. 
There are 5 unique values in the quasi-identifiers. So, G=5. 

There are 2 groups with single records; G1=2; A1 = {(a, 
Cancer)}, A2= {(d, Pneumonia)}. There are 2 groups with 
double records; G2=2; A3 = {(b, Strep), (b, Gastric Ulcer)}, 
A4= {(c, Diarrhea), (c, Gallstones)}. There is 1 group with 3 
records; G3=1, A5 = {(e, Flue), (e, Meningitis), (e, Diabetes)}.  

IV. UNIQUE AND PROBABILITY-BASED RISK 
The first measure of disclosure risk is based on the 

percentage of unique records in the population and can be 
called as the minimum disclosure risk.  

N
n

DR 1
min =  (7) 

  
When the sample unique is equal to the population unique,  

n
n

DR 1
min =  (8) 

Since we made the assumption that an intruder has 
knowledge about identifier and key values, this measure 
represents the percentage of records from the sample that can 
be correctly re-identified by the intruder. This is a minimal 
disclosure risk value.  

This measure has its limits. It does not consider the 
distribution of the records that are not unique. Thus, another 
method considers the disclosure risk based on the probability 
of identification risks for all of the data records. In this 
method, the identity disclosure risk of all records in a group k 
(1 ≤ k ≤ G) of group size i is 

ipr P
i

iDR ==
1)(  (9) 

where, Pi is the probability of identification of an entity in the 
population. The overall disclosure risk for the population can 
be computed by taking the average of the risks of all of the 
records. Thus, the overall disclosure risk in the probability-
based metric becomes, 

n
GG

ni
n

n
Pn

n
DR

n

i
i

n

i

i
n

i
iipr ===×= ∑∑∑

=== 111

11)(1
 (10) 

 
From the above equation, we see that for a fixed number of 

records (n) the overall risk depends upon the number of 
groups or unique values in the quasi-identifier attributes. For a 
fixed number of records, more groups results in more 
disclosure risk. 

A. Analysis of probability-based risk 
The average risk measurement does not reflect whether 

some records are in higher identification risk than the others. 
As long as the total number of groups is fixed for a fixed 
number of records the overall risk in the probability-based 
metric is the same. However, different group sizes (and their 
probabilities) are possible for a fixed total group (G) and fixed 
number of records (n). For example, let us consider that there 
are 12 data records and they are distributed into 3 groups. For 
the fixed value of (n=12) and (G=3), several distributions of 
the three group sizes are possible. Let us consider three 
different distributions, as shown in Fig. 3, among all possible 
distributions.  

In the first distribution (Distribution 1), all of the three 
groups are of equal sizes i.e., each groups has 4 group 
members. Thus, the probability of identification of each 
member of each group is ¼. However, in the second 
distribution (Distribution 2), two groups are of group size 2 
and one group is of group size 8. Thus, the probability of 

Variable values (for 
the left side data) 

n= 9, G= 5 
G1= 2:  
 A1 = {1}, 
 A2 = {6} 
G2= 2: 
 A3 = {2, 5} 

A4 = {3, 4} 
G3= 1: 

A5 = {7, 8, 9} 
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identification of each member of the first two groups is ½ and 
the probability of identification of each member of the third 
group is 1/8. In the third distribution (Distribution 3), two 
groups are of group size 1 and one group is of group size 10. 
Thus, the probability of identification of each member of the 
first two groups is 1 and the probability of identification of 
each member of the third group is 1/10. 

 
Distribution 1 Distribution 2 Distribution 3 

G=3 G=3 G=3 
G4=3 DRpr=1/4 G2=2, 

G8=1 
DRpr=1/4 G1=2, 

G10=1 
DRpr=1/4

Fig. 3. Different group sizes for a fixed total number of groups 
(G=3) and a fixed number of records (n=12). 

 
We can understand that a linking attack by intruder gives 

maximum 25% confidence in identifying all entities in 
Distribution 1. In Distribution 2, a linking attack would give 
maximum 50% confidence in identifying two entities, while in 
Distribution 3, a linking attack would give 100% confidence 
in identifying two entities. However, the overall risk, 
calculated by taking the average, does not differentiate 
between any two distributions among the above three. Thus, 
the average-based overall risk measure cannot express 
people’s feelings about high risk and we need a better metric. 

V. PROPOSED THRESHOLD-BASED DISCLOSURE RISK 
MEASUREMENT METHOD 

The disclosure risk should not only reflect the average risks 
but also indicate how high the higher risks are compared to 
the average. So, in addition to taking the average, it should 
consider the risks of records that are above the average and 
their differences with the average.  

For the same average risk (G/n), different distributions of 
risk among the members are possible. The risk distribution 
depends on the distribution of group sizes (|A1|, |A2|,…|AG|). 
Let us consider, for example, the value of n=12 and G=3. The 
number 12 can be grouped into 3 groups in 9 different ways. 
They are (4, 4, 4), (3, 4, 5), (2, 5, 5), (2, 4, 6), (1, 5, 6), (1, 4, 
7), (1, 3, 8), (1, 2, 9), (1, 1, 10). The first distribution (4, 4, 4) 
implies that four records have one distinct quasi-identifier 
value, four other records have another distinct quasi-identifier 
value and the rest four records have another distinct quasi-
identifier value. The group sizes and hence the probabilities of 
identification are most balanced (equal for all) among all 
members. In the last distribution (1, 1, 10), two records have 
two distinct quasi-identifier values and ten records have 
another distinct quasi-identifier value. The grouping and 
hence the probabilities of identification are most unbalanced 
(1 for two members and 1/10 for ten members) among all 
members.  

In the most balanced partitioning or grouping of n records 
into G groups there can be zero (if n is completely divisible by 
G) or more (if there is a remainder) groups with group size 
equal to (quotient +1) and one or more groups with group size 

equal to the quotient. Thus, the following equations can be 
deduced. 
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In the most unbalanced partitioning of n into G groups there 
can be (G-1) groups with group size 1 and one group with 
group size (n-(G-1)). 

( ) 11 1 GGn ×−=  (14) 
 

11 1 +−+− ×= GnGn Gn  (15) 
 

11 +=+= Gnnnn  (16) 
When we take the average as the overall risk, the overall 

risk value solely depends upon the number of groups. 
Different distribution for the same total number of groups 
does not have any impact on the overall risk value. However, 
the maximum identification probabilities in different 
distributions for a fixed value of G and n vary and people are 
more concerned with higher risks than lower risks. So, the 
grouping having higher risk records should get a higher risk 
value and the grouping having evenly distributed records 
should get a lower risk value. We define the overall risk of a 
given dataset as: 
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0)P-( (b) >=∀ kP  

where,  
m is the number of possible partitioning of n records into G 
groups and can be calculated using partitioning theory, 
Pk is the probability of identification of an entity in the Kth 
group of the given distribution, 
P(b) is the probability of identification of an entity in the Kth 
group for the balanced distribution, 
P(u) is the probability of identification of an entity in the Kth 
group for the most unbalanced distribution. 

Fig. 4 briefly describes the algorithm for calculating our 
threshold-based identity disclosure risk. 
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Algorithm 1 Disclosure Risk (SM) 
1: Count number of records n 
2: Count total number of groups G 
3: Calculate the number of possible distributions m for 

the counted n, G 
4: Find the group sizes |Ak| ∀(1 ≤ k ≤ G) and sort them 

in ascending order. Let 

k
k A

P 1
=  

5: Find the group sizes |A(b)| for the most balanced 
partitioning of n into G parts by using the equations 
11, 12 and 13 and sort them ascending. Let 

)(
)(

1

b
b A

P =  

6: Find the group sizes |A(u)| for the most unbalanced 
partitioning of n into G parts by using the equations 
14, 15 and 16 and sort them ascending. Let 

)(
)(

1

u
u A

P =  

7: Calculate Delta(δ) for ∀(Pk-P(b))>=0; (1 ≤ k ≤ G)  
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8: Calculate the Disclosure Risk as 

δ+=
n
GDRthr  

Fig. 4 Algorithm for Calculating Threshold-based Disclosure Risk 
for a given shared data 

VI. EXPERIMENTAL RESULTS 
We generated simulation-based shared microdata for 

different values of n and G. For several scenarios, we 
calculate and compare the disclosure risks in three metrics: 
unique record-based “Min” metric, probability-based “Avg” 
metric and our threshold-based “Thr” metric. In the graphs, 
we show risks for all possible distributions of n records into G 
groups. However, a given shared microdata will have any one 
of the possible distributions and thus will have one particular 
risk value on the graph depending on its distribution. 

The graphs in Fig. 5, 6 and 7 show the disclosure risks in 
the metrics for 15 records divided into 3 and 5 groups, 50 
records divided into 3 and 8 groups, and 100 records divided 
into 3 and 8 groups respectively. The X axis takes the risk 
distribution number. The value on the X axis has no relation 
with the overall risk measurement. This is because a given 
dataset will have one of the possible distribution numbers. We 
use this distribution number to refer to one of the possible 
distributions. 
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Fig. 5 Disclosure Risks for all possible distribution 15 records into 
3 groups and 5 groups. 
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Fig. 6 Disclosure Risks for all possible distribution of 50 records 
into 3 groups and 8 groups. 
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Fig. 7 Disclosure Risks for all possible distribution of 100 records 
into 3 groups and 8 groups. 

From the graphs, we see that the min metric gives quite a 
lower value of risk compared to the other two metrics but 
increases for certain groupings (towards un-evenly distributed 
group sizes). In all of the graphs, at a specific point, i.e., the 
most balanced distribution of group sizes, our threshold-based 
metric calculates the same risk value as the risk value in the 
probability based Avg. metric. Thus, if the given shared data 
is grouped in the most balanced size, the Thr. metric and the 
Avg. metric will calculate the same disclosure risk. However, 
for all other distribution of group sizes, Thr. Metric gives a 
higher risk value than the Avg. metric, which implies some of 
the entities have higher disclosure risks than others. 

VII. CONCLUSION 
In our threshold-based risk measurement, the higher the 

identification risk of some groups compared to other groups, 
the higher the overall risk will be. For the same number of 
groups, the risk will be the minimum and equal to the value in 
the Avg. metric when all of the group sizes will be equal and 
the risk will be the maximum and equal to  when the group 
sizes will be most un-evenly distributed. Before releasing a set 
of anonymous data, an organization can evaluate the risk 
value for the whole dataset by taking the average. However, to 
evaluate how well the anonymization has been done, it needs 
to calculate the risk value in the Thr. metric and check 
whether the value is close to the maximum or minimum. If it 
is at the minimum, then the anonymization is at its best state 
and if it is at the maximum, the anonymization is at its worst 
state. In the Thr metric, with a risk value equal to the average 
indicates that an individual has an equal chance of being 

identified as others and a higher risk value indicates that an 
individual has a higher chance of being identified than others. 
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