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On Diffusion Approximation of Discrete Markov

Dynamical Systems
Jevgenijs Carkovs

Abstract—The paper is devoted to stochastic analysis of finite
dimensional difference equation with dependent on ergodic Markov
chain increments, which are proportional to small parameter ε. A
point-form solution of this difference equation may be represented
as vertexes of a time-dependent continuous broken line given on the
segment [0,1] with ε-dependent scaling of intervals between vertexes.
Tending ε to zero one may apply stochastic averaging and diffusion
approximation procedures and construct continuous approximation of
the initial stochastic iterations as an ordinary or stochastic Ito differ-
ential equation. The paper proves that for sufficiently small ε these
equations may be successfully applied not only to approximate finite
number of iterations but also for asymptotic analysis of iterations,
when number of iterations tends to infinity.

Keywords—Markov dynamical system, diffusion approximation,
equilibrium stochastic stability.

I. INTRODUCTION

T
HE aim of this paper is to propose an asymptotic methods

for analysis of random iteration procedure in Rd given

in a form of difference equation

xt+1 = xt + εf1(xt, yt) + ε2f2(xt, yt), (1)

where right part depends on small positive parameter ε and

ergodic homogeneous Feller Markov process yt [6] on prob-

ability space (Ω, F,P) with invariant measure µ(dy) and

transition probability p(y, dz) given on compact metric space

Y. We will assume that mappings f1 : Rd × Y → Rd and

f2 : Rd ×Y → Rd are continuous on y ∈ Y, f1(x, y) has two

bounded continuous x-derivatives Df1(x, y) and D2f1(x, y),
and f2(x, y) has bounded continuous x-derivative Df2(x, y).
Starting at t = 0 with given x0, y0 and applying iteration

(1) one can generate vector {xt, 0 ≤ t ≤ N} for any N .

But it is very complicated problem to find distribution of this

vector for sufficiently large number N and therefore to find an

approximation of the above distribution one should employ the

limit theorems of contemporary probability theory (see [10],

[14],[15] and references there). For that one can construct the

broken line in Rd with vertexes in the points {xt} by formula

s ∈ [tε2, (t+1)ε2] : Xε(s) = (xt+1−xt)(sε
−2−t)+xt (2)

for all t ∈ [0, N(ε−2)], where N(α) is integer part of number

α. Applying limit theorem from [15] to distributions

Pε ∼ {Xε(s), 0 ≤ s ≤ 1}
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we will construct limit distribution P ∼ {X(s), 0 ≤ s ≤ 1}
defined by stochastic Ito equation

dX(t) = a(X(s))ds +
d

∑

k=1

σk(X(s))dWk(s) (3)

with initial condition X(0) = x0, where vector-functions a(x)
and σk(x), k = 1, 2, ..., d are defined based on averaging by

measure µ of functions fj(x, y), j = 1, 2 and its derivatives,

and {Wk, k = 1, 2, ..., d} are independent standard Wiener

processes. The finite dimensional distribution of the solution

of this equation {X(tε2), t = 0, 1, ..., N} one can use to

approximate distribution of solution of difference equation (1)

{xt, t = 0, 1, ..., N} for any finite N . It should be mentioned

that for analysis of (3) there are comprehensive facilities of

contemporary stochastic analysis and mathematical physics.

Besides we will prove that for sufficiently small ε to solve

equilibrium asymptotical stability problem for (1) one can

employ the second Lyapunov method derived for stochastic

differential equations (3) in [11].

II. RELATED WORK

The problem of asymptotic analysis of dynamical systems

under small random perturbations has been discussed in many

mathematical and engineering papers. Apparently, A.V. Sko-

rokhod was the first mathematician, which has proved that

the probabilistic limit theorems may be successfully used to

approximate distributions of solutions of random dynamical

systems by the solutions of stochastic differential equations

on any finite time interval (see bibliography in [14],[15], and

[10]). The above result at once has met with wide application

in engineering and economical papers (see [5], [3], [1], [7],

[12] and references there). It should be mentioned that in spite

of the fact that the above result has been developed for the

analysis of equations on a finite time interval, the averaging

and diffusion approximation procedures have been applied in

many applications for asymptotic stability analysis of possible

stationary solutions, that is, for analysis of differential equa-

tions as t → ∞. To prove the validity of this approach for

random dynamical systems with continuous trajectories the

researchers had to use not only a special type of limit theorem

(see for example [4] and [2]) but also a stochastic version

of the Second Lyapunov method developed for stochastic Ito

differential equations in [11]. But most of dynamical systems

of the recent Economics (see, for example, [8], [9], [3], [7],

[12] and review there) require an extension of the above

”smooth” models to allow the phase motion to have a jump

type discontinuity. Some of results permissive to resolve this
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problem have been developed by author in [16] and [17] for

dynamical systems with switching in Markov time moments.

Proposal paper is devoted to similar approach to discrete

Markov dynamical systems. This problem is very important

in contemporary financial econometrics for analysis of ARCH

type stationary iterative procedures (see, for example, [7] and

[12]).

III. PROBABILISTIC LIMIT THEOREMS AND EQUILIBRIUM

STOCHASTIC STABILITY

Let p(y, dz) is transition probability of Markov chain yt and

P is Markov operator

(Pv)(y) :=

∫

Y

v(z)p(y, dz)

defined on the space C(Y) of bounded continuous functions.

We will assume that the spectrum σ(P) has the simple

eigenvalue 1, σ(P)�{1} ⊂ {z ∈ C : |z| < ρ < 1},

and probability distribution {µ(dy)} is the solution of the

equation P∗µ = µ, where P∗ is conjugate operator. Averaging

procedure by the above invariant measure of any dependent on

Markov process vector or matrix will be denoted with overline.

Under these conditions one can extend [6] the potential of

the above Markov process and to define the linear continuous

operator by equality

(Πv)(y) :=

∞
∑

k=0

(Pkv)(y) (4)

on the space C̄(Y) of continuous functions v ∈ C(Y) with

zero average v̄ :=
∫

Y

v(y)µ(dy). This means that the equation

Pg−g = −v with v ∈ C̄(Y) has unique solution (4) in C̄(Y).
Using the above Markov chain one can define on the segment

[0, 1] step processes

s ∈ [tε2, (t + 1)ε2) : Yε(s) := yt (5)

If Ft ⊂ F, t ≥ 0 is minimal filtration for stationary

process yt then for any t ≥ 0 and s ∈ [tε2, (t + 1)ε2)
random vectors Xε(s) and Yε(s) are Ft-measurable. To avoid

cumbersome formulae we will denote conditional expectation

E{ξ/Ft}|xt=x,yt=y in abridged form E
t
x,y{ξ}.

A. Derivation of diffusion approximation formula

In this subsection we will assume that f̄1(x) ≡ 0. Using

the solution xt, t ∈ N of difference equation (1) with initial

condition x0 = x and Markov process yt one can define

the broken lines by formulae (2) and step process (5) for

all t ∈ [0, N(ε−2)]. Not so difficult to be certain of Markov

properties for the pare {Xε(s), Yε(s), 0 ≤ s ≤ 1}. Therefore

under assumption that ε → 0 one can apply the Skorokhod

limit theorems from [14] and [15] for sequences of Markov

processes and look for diffusion approximation of {Xε(s), 0 ≤
s ≤ 1} if the latter exists. Much as it has been done in [16]

for jump type Markov processes in our case for any arbitrary

twice continuous differentiable on x function v(x) one has to

look for Lyapunov function in a form of decomposition

vε(x, y) := v(x)+ε[((Πf1)(x, y),▽)v](x, y)+ε2v̂(x, y) (6)

with some smooth function v̂(x, y). Here and further ▽v(x)
is gradient and (·, ·) is scalar product in Rd. Now one should

compute derivative

(L(ε)vε)(x, y) :=

lim
δ↓0

1

δ
E

t
x,y{vε(Xε(s + δ), Y ε(s + δ)) − vε(Xε(s), Y ε(s))} =

1

ε2
E

t
x,y{vε(xt+1, yt+1) − vε(x, y) + o(ε2)} (7)

for all x ∈ Rd, y ∈ Y, t ≥ 0 and s ∈ [tε2, (t + 1)ε2), and

chose in (6) function v̂(x, y) in such a way as to exist limit

lim
ε→0

(L(ε)vε)(x, y) = (Lv)(x) (8)

As it will be shown later right side of the above equation has

a form of diffusion operator applied to function v(x):

(Lv)(x) = {(a(x),▽) + (σ(x)▽,▽)}v(x) (9)

with vector a(x) and positive defined symmetric matrix σ(x).
To derive the above formula one has to present operator L(ε)
accurate within 0(ε)

L(ε) = 1
ε2 (P − I) + 1

ε
(f1(x, y), ▽)P +

(f2(x, y),▽)P + 1
2 (f1(x, y),▽)2P + 0(ε) (10)

to employ (10) to (6) and to decompose resulting function by

powers of ε accurate within 0(ε):

(L(ε)vε)(x, y) =
1

ε2
(P − I)v(x)+

1

ε
[(f1(x, y),▽)v(x) + (P − I)((Πf1)(x, y),▽)v(x)]+

(f2(x, y), ▽)v(x) +
1

2
(f1(x, y),▽)2v(x)]+

(f1(x, y),▽)P[(f1(x, y), ▽)v(x)] + (P − I)v̂(x, y) + 0(ε)

Therefore using obvious equalities (P − I)Π = −I ,

(P − I)v(x) = 0 and formula (8) one can write equation

Lv(x) = (f2(x, y),▽)v(x) +
1

2
(f1(x, y),▽)2v(x) +

(f1(x, y),▽)[(PΠf1(x, y),▽)v(x)] + (P − I)v̂(x, y)

with unknown function v̂(x, y). As it has been mentioned at

the beginning of this subsection the above equation relative to

v̂(x, y) has solution

v̂(x, y) = Π{(f2(x, y),▽)v(x) +
1

2
(f1(x, y),▽)2v(x) +

(f1(x, y),▽)[(PΠf1(x, y), ▽)v(x)] − Lv(x)} (11)

if and only if

Lv(x) = {(f2,▽)+
1

2
(f1, ▽)2+(f1,▽)[(PΠf1,▽)}v(x) (12)

where overline denotes averaging by measure µ. This equation

one can write in a form (9) using notations

a = f2 + [PΠDf1]T f1

σ = f1fT
1 + f1PΠfT

1 + (PΠf1)fT
1 (13)
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where D is Frechet derivative by x and upper index T denotes

transposition. To write this equation in a form (3) one has to

find d dependent on x vectors σk defined by equation

d
∑

k=1

σk(x)σT
k (x) = σ(x)

As it has been mentioned in [10] this equation has solution

for any positive defined matrix σ(x).

B. Averaging and normalized deviations

Let us remind of assumption f̄1(x) ≡ 0 which permits

in previous subsection to derive formulae (12) and (13).

Otherwise one may not divide segment [0, 1] by intervals of

length ε2 because Πf1(x, y) does not exist and therefore there

are singularity in the definition of operator (7) as ε → 0. To

apply a diffusion approximation in this case one has to find

solution of averaged equation

x̄t+1 = x̄t + εf̄1(x̄t) (14)

and to derive an asymptotic formula for so called normalized

deviations

zt :=
xt − x̄t√

ε
(15)

Substituting xt =
√

εzt + x̄t in (1)

zt+1 = zt + δg1(x̄t, yt) + δ2[Df1(x̄t, yt)]zt + o(δ2), (16)

where δ =
√

ε, g1(x, y) = f1(x, y) − f̄1(x), one can apply

to system (14)-(16) approach of previous subsection. The

sequence (15) gives rise to random processes

Zδ(s) =
Xδ(s) − X̄δ(s)

δ

where Xδ(s) and X̄δ(s) are defined in the same way like (2)

for all s ∈ [tδ2, (t+1)δ2) and any t ∈ [0, N(δ−2)]. After sub-

stitution Zδ(s) instead of Xε(s), [Df1(X̄(s), Y δ(s))]Zδ(s)
instead of f2(Xε(s), Yε(s)) and g1(X̄(s), Y δ(s)) instead of

f1(Xε(s), Yε(s)) in corresponding formulae and vanishing δ
one can approximate probability distribution P

Z
δ of process

Zδ(s) by probability distribution P
Z of process Z satisfying

stochastic differential equation equation

dZ(s) = Df̄1(X̄(s))Z(s)ds +
d

∑

k=1

σk(X̄(s))dWk(s)

with initial condition X̄(0) = x0, where {Wk(s), k =
1, 2, ..., d} are independent standard Wiener processes, and

vectors {σk, k = 1, 2, ..., d} satisfy an equality

d
∑

k=1

σk(x)σT
k (x) = [g1gT

1 + g1PΠgT
1 + (PΠg1)gT

1 ](x)

Deterministic function X̄(s) one can find as the solution of

ordinary differential equation

dX̄(s) = f̄1(X̄(s))ds

Roughly speaking for sufficiently small ε one can approximate

distribution of the sequence {xt, 0 ≥ t ≥ N(ε−1)} by

distribution of sequence {X(tε)+
√

εZ(tε), 0 ≥ t ≥ N(ε−1)}.

C. Equilibrium asymptotic stability

As it has been mentioned in the Section 2 some of applica-

tion iterative procedures analysis require asymptotic analysis

of equation (1) as t → ∞. For example discussing diffusion

approximation approach to GARCH time series authors of

papers [12] and [7] indicate this problem in view of the

approximation and asymptotic stability analysis of stationary

conditional variance. In previous section we have derived an

approximate distribution of sequence {xt, 0 ≤ t ≤ N} for

any finite integer number N by distribution of solution of

stochastic differential equation {X(s), 0 ≤ s ≤ 1} but for

the above mentioned asymptotic analysis as t → ∞ one has

to deal with equation (3) with unrestrictedly large s. Besides

there is a problem of legality results which are based on the

diffusion approximation as s → ∞. This subsection is devoted

to the above problem.

Let point x = 0 be an equilibrium of iteration procedure (1),

i.s. f1(0, y) ≡ 0 and f2(0, y) ≡ 0. If for any η > 0 there

exists such a neighborhood Ur := {x ∈ Rd : |x| < r} that

any starting in Uη solution xt of (1) does not leave Ur and

tends to zero as t → ∞ with probability greater than 1−η the

above equilibrium is called asymptotic stochastically stable.

As it has been shown in [13] for equilibrium stability analysis

one can employ the second Lyapunov method with Lyapunov

operator defined by formula

(Lv)(x, y) := E
0
x,y{v(x1, y1)} − v(x, y)

and Lyapunov functions satisfying inequality

|x|p < v(x, y) < c|x|p

with some positive p a c ≥ 1. If there exists such a Lyapunov

function v(x, y) that

(Lv)(x, y) < −γ|x|p

with γ ∈ (0, 1) then [13] equilibrium is asymptotic stochas-

tically stable and Ex,y{|xt|} ≤ M |x|p exp{−ρt} with some

positive constants M and ρ. Besides under smoothness as-

sumptions of the Section 1 on vectors f1(x, y) and f2(x, y),
this equilibrium is asymptotic stochastically stable if and only

if [13] the same property has the trivial solution of its linear

approximation

x̃t+1 = x̃t + εf̃1(x̃t, yt) + ε2f̃2(x̃t, yt) (17)

where f̃j(x, y) = (Dfj)(0, y)x, j = 1, 2. Therefore for

asymptotic analysis of (1) as t → ∞ one can apply formulae

(9) with (6), (11), (12), and (13) substituting linear on x ∈ Rd

functions f̃j(x, y) instead of fj(x, y), j = 1, 2 and rewriting

equation (3) in a form of linear stochastic Ito equation

dX̃(s) = AX̃(s))ds +
d

∑

k=1

BkX̃(s)dWk(s) (18)

The same result like mentioned above for Markov iterations

(17) one can find in [11] for stochastic differential equation

(18): trivial solution of (18) is asymptotic stochastically stable

if and only if there exists such twice continuous differentiable

Lyapunov function V (x) that

|x|p ≤ V (x) ≤ h1|x|p, LV (x) ≤ −h2|x|p (19)
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and ||Dl
▽v(x)|| ≤ h3|x|p−l−1, l = 1, 2, 3 for some p > 0,

positive constants hj , j = 1, 2, 3. and any x ∈ Rd. Now for

analysis of asymptotic behaviour of linear iteration (17) one

can apply the second Lyapunov method with function

V ε(x, y) :=

V (x) + ε[((Πf̃1)(x, y), ▽)V ](x, y) + ε2V̂ (x, y) (20)

where V (x) satisfies inequalities (19) and

V̂ (x, y) = Π{(f̃2(x, y),▽)V (x) +
1

2
(f̃1(x, y), ▽)2V (x) +

(f̃1(x, y),▽)[(PΠf̃1(x, y),▽)V (x)]} (21)

Owing to linearity of functions f̃j(x, y), j = 1, 2 and definition

of LV (x) for all sufficiently small ε > 0 there exist such

positive constants hj , j = 4, 9 that the above defined functions

satisfy inequalities

h4|x|p ≤ |V̂ (x, y)| ≤ h5|x|p,
h6|x|p ≤ |[((Πf̃1)(x, y),▽)V ](x, y)| ≤ h7|x|p

|V ε(x, y) − V (x)| ≤ εh8|x|p

and

|(L(ε)V ε)(x, y) − LV (x)| < εh9|x|p

Therefore if the trivial solution of diffusion approximation

is asymptotically stable then there exists Lyapunov function

satisfying (19) and for stability analysis of (17) one can use

function (20):

(LV ε)(x, y) = ε2(L(ε)V ε)(x, y) ≤
≤ ε2

LV (x) ≤ ε2(−h2 + εh9)|x|p

This inequality convinces of asymptotical stochastic stability

for trivial solution of difference equation (17) if ε is suffi-

ciently small.

D. Example. Markov type GARCH model

In papers [7] and [12] the authors discuss a problem of

diffusion approximation for very popular in contemporary

econometrics GARCH (General AutoRegressive Conditional

Heteroscedastic) process for conditional time series variance.

The paper [12] deals with model given in a form of first order

linear difference equation

σ2
t+1 = ωh + σ2

t [βh + h−1αhhZ2
t ] (22)

where h is small positive parameter, {hZt, t ∈ Z} is sequence

of i.i.d. random variables with zero mean, variance E{hZ2
t } =

h, and fourth moment E{hZ4
t } = 3h2. Under assumptions

1−αh−βh = hθ+o(h), ωh = hω+o(h), αh =

√
h√
2
α+o(h)

author of paper [12] derives diffusion approximation equation

in a form

dσ2
t = (ω − θσ2

t )dt + ασ2
t dW (t) (23)

To compare this result with our derived formulae one can

denote

h = ε2, xt = σ2
t , yt =

hZ2
t − h√
2h

and rewrite equation (22) in a form of difference equation (1)

accurate within ε-items of second order

xt+1 = xt + ε2[ω − θxt] + εαytxt (24)

Let yt be stationary Markov process with the same uncondi-

tional moments as hZ2
t
−h√

2h
, that is, Eyt = 0,Ey2

t = 1 and

correlation function C(k) = E{ytyt+k} for k ∈ N. Following

our proposal method of diffusion approximation one should for

this equation calculate parameters (13) with f1(x, y) = αyx,

f2(x, y) = ω − θx. By definition

a(x) = ω − θx + α2x
∞
∑

l=1







∫

Y

E
0
y{yyl}µ(dy)







=

= ω +

[

α2
∞
∑

k=1

C(k) − θ

]

x

σ2(x) = α2x2

∫

Y

y2µ(dy) + 2α2x2
∞
∑

k=1

C(k) =

α2x2

[

Var{yt} + 2

∞
∑

k=1

C(k)

]

If {yt, t ∈ Z} are independent random variables with zero

mean and unit variance like it has been assumed in [12]

we have derived equation (23) because C(k) ≡ 0. If κ :=
∞
∑

k=1

C(k) 6= 0 one should apply diffusion approximation for

GARCH(1,1)-process in a following form

dσ2
t = (ω + (α2κ − θ)σ2

t )dt + α
√

1 + 2κσ2
t dW (t) (25)

As it has been proved this equation one can use also for

analysis of (22) as t → ∞. According to [11] if

α2κ − θ − α2(1 + 2κ)

2
= −θ − α2

2
< 0

there exists stationary solution ŝ2
t of the above equation and

deviations zt := s2
t − ŝ2

t of any other solution from this

stationary process exponentially tend to zero as t → ∞. In

spite of the fact that process yt has nonzero correlation this

result no differs from similar result of the paper [12]. But to

approximate stationary process for GARCH(1,1) with Markov

process yt instead of i.i.d. sequence one has to deal with

stationary solution of equation (25) where κ 6= 0. As it has

been derived by E.Wong [18] for linear stochastic Ito equation

the stationary process defined by (25) has density function

f(x) = srx(r−1)

Γ(r) e−sx where r = 1 + 2(θ−α2κ)
α2(1+2κ) ,s = 2ω

α2(1+2κ)
that is, correlation affects distinctly on the asymptotic approx-

imation of stationary distribution.

IV. CONCLUSION

Stochastic averaging and diffusion approximation proce-

dures may be successfully applied both to approximate finite

number of Markov type iterations and for asymptotic analysis

of iterations, when number of iterations tends to infinity. On

application of the above probabilistic limit theorems to asymp-

totic analysis of stochastic iterative procedures a consideration
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must be given to possible correlation of perturbing processes.

This affects not only a diffusion approximation formula but

also a decision on iterations convergence and limit distribution.
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