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On Cross-Ratio in some Moufang-Klingenberg
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Abstract—In this paper we are interested in Moufang-Klingenberg
planes M(.A) defined over a local alternative ring .A of dual numbers.
We show that a collineation of M(.A) preserve cross-ratio. Also, we
obtain some results about harmonic points.
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I. INTRODUCTION

In the Euclidean plane, Desargues established the funde-
mantal fact that cross-ratio (a concept originally introduced by
Pappus of Alexandria ¢.300 B.C) is invariant under projection
[4, p. 133]. For this reason, cross-ratio is one of the most
important concepts of projective geometry.

In this paper we deal with the class (which we will denote by
M(.A)) of Moufang-Klingenberg (MK) planes coordinatized
by a local alternative ring

A:=A(e)=A+Ac

(an alternative field A, ¢ ¢ A and €2 = 0) introduced by
Blunck in [8]. We will show that a collineation of M(.A)
given in [2] preserves cross-ratio. Moreover, we will obtain
some results related to harmonic points. For more information
about some well-known properties of cross-ratio in the case
of Moufang planes or MK-planes M(.A), respectively, it can
be seen the papers of [10], [5], [9] or [8], [1].

The paper is organized as follows: Section 2 includes some
basic definitions and results from the literature. In Section 3
we will give a collineation of M(.A) from [2] and we show
that this collineation preserves cross-ratio. Finally, we obtain
some results on harmonic points.

Il. PRELIMINARIES

Let M = (P,L,€,~) consist of an incidence structure
(P, L, €) (points, lines, incidence) and an equivalence relation
‘~” (neighbour relation) on P and on L, respectively. Then
M is called a projective Klingenberg plane (PK-plane), if it
satisfies the following axioms:

(PK1) If P,@Q are non-neighbour points, then there is a
unique line PQ through P and Q.

(PK2) If g, h are non-neighbour lines, then there is a unique
point g N A on both g and h.

(PK3) There is a projective plane M* = (P*,L*, €) and
an incidence structure epimorphism ¥ : M — M*, such that
the conditions

U(P)=¥(@Q) = P~Q, ¥(g)=Vh)<g~h
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hold for all P,Q € P, g,h € L.

A point P € P is called near a line g € L iff there exists
a line h ~ g such that P € h.

Let h,k € L, C € P, C is not symmetric to h and k. Then
the well-defined bijection

h—k
U::ac(k,h):{ X - XC Ak

mapping h to k is called a perspectivity from h to & with
center C. A product of a finite number of perspectivities is
called a projectivity.

An incidence structure automorphism preserving and re-
flecting the neighbour relation is called a collineation of M.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M* is a
Moufang plane (for the exact definition see [3]).

An alternative ring (field) R. is a not necessarily associative
ring (field) that satisfies the alternative laws

a(ab) = a®b, (ba) a = ba?,Ya,b € R.

An alternative ring R with identity element 1 is called local
if the set I of its non-unit elements is an ideal.

We are now ready to give consecutively two important
lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of
an alternative ring is associative (cf. [12, Theorem 3.1]).

Lemma 2.2: The identities

z(y (22)) = (zyx) 2
((yx) z)x =y (z22)
(zy) (22) = = (y2) x

which are known as Moufang identities are satisfied in every
alternative ring (cf. [11, p. 160]).

We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [3].

Let R be a local alternative ring. Then M(R) = (P,L, €
,~) is the incidence structure with neighbour relation defined
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as follows:

P = {(z,y,1): z,y € R}
U{(1,y,2):y€eR, z€1}
U{(w,1,2)| : w,z € I},

L = {[m,1,p]: mpeR}
U{[l,n,p] : p€ R, nel}
Hlg,n,1] : ¢,n € I}

m,1,p] = {(z,zm+p,1):2€ R}
U{(1,zp+m,z): z 1}
[Ln,p] = {(yn+py1):yeR}
U{(zp+n,1,2): 2z €I}
lg,n,1] = {(Ly,yn+q):y R}
U{(w,1,wg+n):w eI}

and

P =(z1,22,23) ~ (y1,¥2,y3) = Q &
z—y €1 (1=1,2,3)),VP,Q P
g = [x1, 22, 23] ~ [y1,Y2,y3] = h &

Now it is time to give the following theorem from [3].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ¢ ¢ A. Consider A :=
A(e) = A + Ae with componentwise addition and multipli-
cation as follows:

(a1 + aze) (by + boe) = arby + (a1bs + azby) €,

where a;,b; € A for i = 1,2. Then A is a local alternative
ring with ideal I = A« of non-units. The set of formal inverses
of the non-units of A is denoted as I~'. Calculations with the
elements of I~! are defined as follows [7]:

(a5)71 +t = (a5)71 =1+ (ae)*1
qae)™t = (aq_la)_l
(ae)'q = (q_laa)_l

((ae)fl) o = ae,

where (ag) " € I7', t € A, g € A\ I (Other terms are not
defined.). For more information about A and its relation to
MK-planes, the reader is referred to the papers of Blunck [7],
[8]. In [8], the centre Z (.A) is defined to be the (commutative,
associative) subring of .4 which is commuting and associating
with all elements of A. Itis Z (A) := Z (¢) = Z + Ze, where
Z ={z€ A :za=az Yac A} is the centre of A. If A is
not associative, then A is a Cayley division algebra over its
centre Z.

Throughout this paper we assume charA # 2 and we
restrict ourselves to the MK-planes M(.A)

Blunck [8] gives the following algebraic definition of the

cross-ratio for the points on the line g := [1,0, 0] in M(A).
(A, B;C, D) := (a,b;c,d)
—<(a=a) 0-d) (b= (@a=0) >
(Z,B;C,D) = (27!, b;c,
=< ((1 —dz) ' (b—d)
(A, Z;C, D) := (a7 27l
=< ((a —d) (1 dz)
(A,B; Z,D) = (a,b;z~ ",
=< ((a A - d)) ((1
(A,B;C,Z) = (a, b; c,z_l)
=< ((1 —za) T (1— zb)) ((b —o) Y- c)) >,

where A = (0,a,1),B = (0,b,1),C = (0,¢,1),D = (0,d,

1),Z = (0,1, z) are pairwise non-neighbour points of g and
<z>={ylzy: ye A}

N~——

>

HN— O

—2b) " (1= za)) >

In [7, Theorem 2], it is shown that the transformations

tu(z) = z+uucA
ru () = zuyue A\I
i(r) = a7t
ly(z) = wa=(ir;'i)(z); ue A\I

which are defined on the line g preserve cross-ratios. In [6,
Corollary (iii)], it is also shown that the group generated
by these transformations, which is denoted by A, equals to
the group of projectivities of a line in M(A). The elements
preserving cross-ratio of the group A defined on ¢ will act a
very important role in the proof of Theorem 3.1.

We give the following result from [1, Theorem 8]. This
result states a simple way for calculation of the cross-ratio of
the points on any line in M(A).

Theorem 2.2: Let {O,U,V,E} be the basis of M(A)
where O = (0,0,1),U = (1,0,0),V = (0,1,0), E = (1,1,1)
(see [3, Section 4]). Then, according to types of lines, the
cross-ratio of the points on the line [ can be calculated as
follows:

If A,B,C,D Z are the pairwise non-neighbour points

(@) of the line i = [m, 1, k], where A = (a,am+k,1),B =
b, bm + k,1),C = (¢,em + k,1),D = (d,dm + k, 1)
are not near to the line UV = [0,0,1] and Z = (1,m +
zp, z) is near to UV;

(b) of the line I = [1,n,p], where A = (an + p,a,1),B =
(bn+p,b,1),C = (ecn+p,¢,1),D = (dn+p,d, 1) are
not neighbour to V and Z = (n+ zp,1,z) ~ V;

(c) of the line I = [g,n,1], where A= (1,a,q+ an),B =
(1,b,g+bn),C =(1,c,q+cn),D = (1,d,q+ dn) are
not neighbour to V and Z = (2,1,2q +n) ~ V;
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then
(A,B;C,D) = (a,b;c,d)
(2,B;C,D) = (2 ',bc,d)
(A,Z;C,D) = (a7z71;c,d)
(A,B;Z,D) = (a,b;z"",d)
(A,B;C,Z) (a7b;c,z_1)

We can give an important theorem, from [1, Theorem 9],
about cross-ratio.

Theorem 2.3: In M(.A), perspectivities preserve cross-rati-
0S.

Now we give a definition in M(.A), well known from the
case of Moufang planes [10]. In M(.A), any pairwise non-
neighbour four points A, B,C, D € [ are called as harmonic
if (4,B;C,D) =< —1 > and we let h(A, B, C, D) represent
the statement: A, B, C, D are harmonic.

I11. ON CROSS-RATIO IN M(A).

In this section we will give a collineation of M(.A), from
[2]. Next, we show that the collineation preserve cross-ratios.
Now we start with giving the collineation of M(.A), where
w,z,q,n € AFor any s ¢ I, the map J, transforms points
and lines as follows:

(z,y,1) — (ys Las, 1)
(Lyeze) — (Loylss(y2)) if yg T
(1,y,26) — (sflysfl,l,s z) ifyel
(we,1,ze) — (1, sws,sz)
and
[m,1,k] — [smfls7 1, (l{:mfl) s} if mél
[m,1,k] — [1, s~ lms 1,k3571] if mel
[1,ne,p] — [sns,1,ps]
lge,ne, 1] —  [sn, s71g, 1]

Now we are ready to give the following

Theorem 3.1: The collineation J, preserve cross-ratio.
Proof: Let A,B,C,D and Z be the points with the
property given in the statement of Theorem 2.2. Then, it is
obvious that

(A,B;C,D) (a,b;c,d)

(Z,B;C,D) = (zfl,b;c,d)

(A,Z;C,D) = (a, 2L, d) Q)
(A,B;Z,D) = (a,b;z"",d)

(A,B;C,Z) = (a7 b; c,zil)7

where z € I. In this case we must find the effect of ¢ to the
points of any line where ¢ is the collineations J;.

Let ¢ =J,. If I = [m, 1, k], then
o(X) = p(z,am+k,1)
= ((zm+k)s~t as, 1)
o(Z) = @(l,m+ zk,z)
= (1,s(m 4+ zk)7ts,s((m + zk)"'2))
form+zk &1
o(Z) = (l,m+ zk,z)
= (s Hm+zk)s7' 1,57 12),
form+zk el
o) = [sm7's,1,— (km™")s] form¢lI
o) = [Ls'ms ' ksT!] formel

In this case, from (a) of Theorem 2.2, the cross-ratio of the
points of [sm~'s,1,— (km™') s] is as follows:

(¢ (A),¢(B);¢(C), (D))

= ((am+k)s~ L, (bm +k)s™?
(em+E)s™h (dm +k)s™1)
=7 (a,b;c,d)
(@(Z),w(B);sD(C),ﬁ(D))

= ((s(m+zm'2)) L ma ks
(em+E)s™t (dm +k)s™1)

= ”(zfl,b;c,d),

where o = r,,,-10t_jors € A. From (b) of Theorem 2.2, the
cross-ratio of the points of [1,s™'ms™!, ks™!] is as follows:

(p(A),¢(B);¢(C), ¢ (D))
= (as,bs; cs,ds) =7 (a,b;c,d)
(¢ (2),¢(B);¢(C), ¢ (D))
= (z7's,bs;es,ds) =7 (271, byc,d) ,

where o = r,-1 € A.
If I =[1,n,p], then
¢ (X)=p(@n+pal)=(zs"" (an+p)s,1)
e (Z)=pn+2zp1,2)=(1,s(n+ zp)s,sz)
and
o (1) = [sns,1,ps].

In this case, from (a) of Theorem 2.2, the cross-ratio of the
points of [sns, 1, ps] is as follows:

((A),¢(B);¢(C),¢ (D)
= (as™ 1 bs7 s dsT) =7 (a,b; ¢, d)

(¢ (2),¢(B);¢(C), (D))

= (z7ts7 s est dsTl) =° (z_l,b; c, d) ,

where o =7, € A. If [ = [¢,n, 1], then

p(X) = ea,qg+tan)=(1Lsz7"s, 527 (g +2n)))
forx ¢l

e(X) = o a,qtan)=(s""ws"" 1,5 (¢ +an))
forx el

©(Z) = ¢(zLzq+n)=(1,s2s5(2q +n))
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and
(1) = [sm,571,1] .

In this case, from (c) of Theorem 2.2, the cross-ratio of the
points of [sn,s~'q,1] is as follows:

(A), ¢ (B);¢(C),¢(D))
= (sa_ls7sb_1s;sc_ls,sd_ls)
7 (a,byc,d),
(2),¢(B);¢(C), (D))
(szs7 sb71ls;sc7 s, sd_ls)

7 (z_17b;c,d),

—

[

where 0 =iol,-1 or,—1 € A. Consequently, by considering
other all cases we get

(p(A),¢(B)ip(C),p (D)) (a,b;c,d)

(#(2),¢(B);9(C),p(D) = (21 bed)
(P (4),9(2);9(C), (D) = (a,27}¢,d)
(0(A),0(B);p(Z),0(D) = (a,b;z"",d)
(¢ (A),¢(B);9(C),¢(2) = (abe,z"

for collineation . Combining the last result and the result of
(1), the proof is completed. [ ]

Now we are ready to give the other results of the paper.
On A we give the following theorem, an alternate definition
of harmonicty and given for an alternative ring A with
charA # 2.

Theorem 3.2: Let a,b,¢,d € A. Then h(a,b,c,d) if and
only if

1) ifa,bye,de A, 2(a—b)"t=(a—c)t+(a—d)™?
2) ifa=2"42d-c) P +(c-b)t=2€l
) ifo=2"12c—d) ' +(d-a)t=z€l
4) ife=z"120-a)t+(d-b)t=z¢cl
1

5) ifd=2"12(a-b)"t+(c—a)l=2€L
Proof: 1. From the definition of cross-ratio,

h(a,b,c,d) = ((a ) b d)) ((b —o) a— c)) - 1L

By direct computation (with Lemma 2.1),

(a—d) ' (b—d)=—(a—c) " (b—c)
(a—d)'b—a+a—d) =—(a—c)  (b—a+a—-c)
(a ( a—c) ' (b—a)—1

2. From the definition of cross-ratio,

h(z7',b,c,d)
—(0=a o-d) (b= (=) = 1.

By direct computation (Lemma 2.1),
b—c)'(1—c2)=—(b—d)"' (1 —dz)

b—c) ' A—c2)=—(b—d) ' (1 —cz+cz—dz)

b—c)'(Q=c2)=—(b—d) ' (1—-c2)

—(b—d) " ((c—d)2)

(=0 + 0= ) (1-cx) === (- d)2)
b—c) " +(b—d) "t =— ((b —d) (e —d) z)) (1+c2)
b—c) 4 b—d) == b—d) " ((c—d)2)

(
(

b—dy(b—¢) " +1=—(c—d)z
b—ct+c—d)(b—c) ' +1=—(c—d)z
24 (c—d)(b—c) ' =—(c—d)z
20c—d) "+ (b—c)=—2

2d—c) ' H(c—b) " =z€l,

where zz = 0 since z € I.
3. The proof is same the proof of 2.
4. From the definition of cross-ratio,

h (a, b,z‘l,d)
- <(a A - d)) ((1 —a)ta - za)) — 1.
By direct computation (Lemma 2.1),

(1—zb)"(1—za)=—(0b—d) " (a—d)
(1+2b)(1—za)=—(b—d) " (a—b+b—d)
l4+zb—za=—(b—d) ' (a—b)—1
24z(b—a)=—(b—d) " (a—b)
2b—a) P +z=(0b—d) "
b=

2(b—a)"t + (d - zel,

where (1 — zb) "' =1+ zband 2z = 0.
5. The proof is same the proof of 4. ]

Now, we give the following theorem, given as without proof
in [10] for A.

Theorem 3.3: On A, the followings is valid:
1) h(0,a,07%, %)
2) h(a,b,071, 25)
3) h(a,—a, 0710
4) h(l,—-1,a, a_lg
5) h(a?1,a, —a)
Proof: 1. By the definition of cross-ratio, since

o3 = (0-3) " -3 - 5

then h (0,a,07%,%).
2. By the definition of cross-ratio, since

(MO*l““’) _ <a_a+b>_1<b_a+b>
P 9 2 2 2
- (57 (5=
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3. By the definition of cross-ratio, since

(a,~a,07,0) = (a—0)"" (—a—0) = 1, "
then h (a, a, 0*1,0).
4. By the definition of cross-ratio, since 2]
(L-taa?) = (1= )" (-1-a™)) o
((—1—a) 1(1—a)) [4]
= (@07 -0-a) e
1 “1 3]
((—1—(1) (1+a) a) o
= (@' -) " @a-a))
((71 —a) '+ (a™' (14 a))il) 8]
- ((a_l -1 —(a- 1)’1) [9]
(-a+a "+ (@ +1)7) [10]
= (@'Yt + 1) = (1+a)! 1]
—a-)" (@ + ) = (1 +a)) B2
= (@' -1) (@) @t
I+a) ' —=(a—1)"" (@ +1)7"
ta-1)"(1+a)™
= (@' +1) (@ -1) "
—((1+a) (@ =1))"
— ((a_l + 1) (a—1 )_
+((1+a)(af 1))~"
= (atet—at+a” —1)_1
(a7t —141- a)
-(1-at —|—a—1) + a—1+aa—a) !
= (@l =) = (e =)
—(=a™! )_ +(~1+aa)”"
= (a7 (a” al) (Oblfa)_l1
+(at = a)1 CIC 61))_
= (a7 = a)_l a—(a""—a) a!
= (a7 —a) (a—a™")
= -1,
then i (1,-1,a,a7').

5. By the definition of cross-ratio, since

— ((a2 + a)71 (1 +a)> ((1 — a)_l (a2 — a))

((12,1,a7 fa)

(
- (o

-1,

then h (a?,1,a,—a
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