On Cross-Ratio in some Moufang-Klingenberg Planes

Atilla Akpinar and Basri Celik

Abstract

In this paper we are interested in Moufang-Klingenberg planes $\mathbf{M}(\mathcal{A})$ defined over a local alternative ring \mathcal{A} of dual numbers. We show that a collineation of $\mathbf{M}(\mathcal{A})$ preserve cross-ratio. Also, we obtain some results about harmonic points.

Keywords-Moufang-Klingenberg planes, local alternative ring, projective collineation, cross-ratio, harmonic points.

I. Introduction

In the Euclidean plane, Desargues established the fundemantal fact that cross-ratio (a concept originally introduced by Pappus of Alexandria c. 300 B.C) is invariant under projection [4, p. 133]. For this reason, cross-ratio is one of the most important concepts of projective geometry.

In this paper we deal with the class (which we will denote by $\mathbf{M}(\mathcal{A})$) of Moufang-Klingenberg (MK) planes coordinatized by a local alternative ring

$$
\mathcal{A}:=\mathbf{A}(\varepsilon)=\mathbf{A}+\mathbf{A} \varepsilon
$$

(an alternative field $\mathbf{A}, \varepsilon \notin \mathbf{A}$ and $\varepsilon^{2}=0$) introduced by Blunck in [8]. We will show that a collineation of $\mathbf{M}(\mathcal{A})$ given in [2] preserves cross-ratio. Moreover, we will obtain some results related to harmonic points. For more information about some well-known properties of cross-ratio in the case of Moufang planes or MK-planes $\mathbf{M}(\mathcal{A})$, respectively, it can be seen the papers of [10], [5], [9] or [8], [1].

The paper is organized as follows: Section 2 includes some basic definitions and results from the literature. In Section 3 we will give a collineation of $\mathbf{M}(\mathcal{A})$ from [2] and we show that this collineation preserves cross-ratio. Finally, we obtain some results on harmonic points.

II. Preliminaries

Let $\mathbf{M}=(\mathbf{P}, \mathbf{L}, \in, \sim)$ consist of an incidence structure $(\mathbf{P}, \mathbf{L}, \in)$ (points, lines, incidence) and an equivalence relation ' \sim ' (neighbour relation) on \mathbf{P} and on \mathbf{L}, respectively. Then \mathbf{M} is called a projective Klingenberg plane (PK-plane), if it satisfies the following axioms:
(PK1) If P, Q are non-neighbour points, then there is a unique line $P Q$ through P and Q.
(PK2) If g, h are non-neighbour lines, then there is a unique point $g \cap h$ on both g and h.
(PK3) There is a projective plane $\mathbf{M}^{*}=\left(\mathbf{P}^{*}, \mathbf{L}^{*}, \in\right)$ and an incidence structure epimorphism $\Psi: \mathbf{M} \rightarrow \mathbf{M}^{*}$, such that the conditions

$$
\Psi(P)=\Psi(Q) \Leftrightarrow P \sim Q, \Psi(g)=\Psi(h) \Leftrightarrow g \sim h
$$

Atilla Akpinar and Basri Celik are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: aakpinar@uludag.edu.tr, basri@uludag.edu.tr.
hold for all $P, Q \in \mathbf{P}, g, h \in \mathbf{L}$.
A point $P \in \mathbf{P}$ is called near a line $g \in \mathbf{L}$ iff there exists a line $h \sim g$ such that $P \in h$.

Let $h, k \in \mathbf{L}, C \in \mathbf{P}, C$ is not symmetric to h and k. Then the well-defined bijection

$$
\sigma:=\sigma_{C}(k, h):\left\{\begin{array}{l}
h \rightarrow k \\
X \rightarrow X C \cap k
\end{array}\right.
$$

mapping h to k is called a perspectivity from h to k with center C. A product of a finite number of perspectivities is called a projectivity.

An incidence structure automorphism preserving and reflecting the neighbour relation is called a collineation of \mathbf{M}.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane \mathbf{M} that generalizes a Moufang plane, and for which \mathbf{M}^{*} is a Moufang plane (for the exact definition see [3]).

An alternative ring (field) \mathbf{R} is a not necessarily associative ring (field) that satisfies the alternative laws

$$
a(a b)=a^{2} b,(b a) a=b a^{2}, \forall a, b \in \mathbf{R}
$$

An alternative ring \mathbf{R} with identity element 1 is called local if the set \mathbf{I} of its non-unit elements is an ideal.

We are now ready to give consecutively two important lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of an alternative ring is associative (cf. [12, Theorem 3.1]).

Lemma 2.2: The identities

$$
\begin{aligned}
& x(y(x z))=(x y x) z \\
& ((y x) z) x=y(x z x) \\
& (x y)(z x)=x(y z) x
\end{aligned}
$$

which are known as Moufang identities are satisfied in every alternative ring (cf. [11, p. 160]).

We summarize some basic concepts about the coordinatization of MK-planes from [3].

Let \mathbf{R} be a local alternative ring. Then $\mathbf{M}(\mathbf{R})=(\mathbf{P}, \mathbf{L}, \in$ $, \sim)$ is the incidence structure with neighbour relation defined
as follows:

$$
\begin{aligned}
\mathbf{P}= & \{(x, y, 1): x, y \in \mathbf{R}\} \\
& \cup\{(1, y, z): y \in \mathbf{R}, z \in \mathbf{I}\} \\
& \cup\{(w, 1, z) \mid: w, z \in \mathbf{I}\}, \\
\mathbf{L}= & \{[m, 1, p]: m, p \in \mathbf{R}\} \\
& \cup\{[1, n, p]: p \in \mathbf{R}, n \in \mathbf{I}\} \\
& \cup\{[q, n, 1]: q, n \in \mathbf{I}\} \\
{[m, 1, p]=} & \{(x, x m+p, 1): x \in \mathbf{R}\} \\
& \cup\{(1, z p+m, z): z \in \mathbf{I}\} \\
{[1, n, p]=} & \{(y n+p, y, 1): y \in \mathbf{R}\} \\
& \cup\{(z p+n, 1, z): z \in \mathbf{I}\} \\
{[q, n, 1]=} & \{(1, y, y n+q): y \in \mathbf{R}\} \\
& \cup\{(w, 1, w q+n): w \in \mathbf{I}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& P=\left(x_{1}, x_{2}, x_{3}\right) \sim\left(y_{1}, y_{2}, y_{3}\right)=Q \Leftrightarrow \\
& \left.x_{i}-y_{i} \in \mathbf{I}(i=1,2,3)\right), \forall P, Q \in \mathbf{P} \\
& g=\left[x_{1}, x_{2}, x_{3}\right] \sim\left[y_{1}, y_{2}, y_{3}\right]=h \Leftrightarrow \\
& \left.x_{i}-y_{i} \in \mathbf{I}(i=1,2,3)\right), \forall g, h \in \mathbf{L} .
\end{aligned}
$$

Now it is time to give the following theorem from [3].
Theorem 2.1: $\mathbf{M}(\mathbf{R})$ is an MK-plane, and each MK-plane is isomorphic to some $\mathbf{M}(\mathbf{R})$.

Let \mathbf{A} be an alternative field and $\varepsilon \notin \mathbf{A}$. Consider $\mathcal{A}:=$ $\mathbf{A}(\varepsilon)=\mathbf{A}+\mathbf{A} \varepsilon$ with componentwise addition and multiplication as follows:

$$
\left(a_{1}+a_{2} \varepsilon\right)\left(b_{1}+b_{2} \varepsilon\right)=a_{1} b_{1}+\left(a_{1} b_{2}+a_{2} b_{1}\right) \varepsilon
$$

where $a_{i}, b_{i} \in \mathbf{A}$ for $i=1,2$. Then \mathcal{A} is a local alternative ring with ideal $\mathbf{I}=\mathbf{A} \varepsilon$ of non-units. The set of formal inverses of the non-units of \mathcal{A} is denoted as \mathbf{I}^{-1}. Calculations with the elements of \mathbf{I}^{-1} are defined as follows [7]:

$$
\begin{aligned}
(a \varepsilon)^{-1}+t & :=(a \varepsilon)^{-1}:=t+(a \varepsilon)^{-1} \\
q(a \varepsilon)^{-1} & :=\left(a q^{-1} \varepsilon\right)^{-1} \\
(a \varepsilon)^{-1} q & :=\left(q^{-1} a \varepsilon\right)^{-1} \\
\left((a \varepsilon)^{-1}\right)^{-1} & :=a \varepsilon,
\end{aligned}
$$

where $(a \varepsilon)^{-1} \in \mathbf{I}^{-1}, t \in \mathcal{A}, q \in \mathcal{A} \backslash \mathbf{I}$. (Other terms are not defined.). For more information about \mathcal{A} and its relation to MK-planes, the reader is referred to the papers of Blunck [7], [8]. In [8], the centre $\mathbf{Z}(\mathcal{A})$ is defined to be the (commutative, associative) subring of \mathcal{A} which is commuting and associating with all elements of \mathcal{A}. It is $\mathbf{Z}(\mathcal{A}):=\mathbf{Z}(\varepsilon)=\mathbf{Z}+\mathbf{Z} \varepsilon$, where $\mathbf{Z}=\{z \in \mathbf{A}: z a=a z, \forall a \in \mathbf{A}\}$ is the centre of \mathbf{A}. If \mathbf{A} is not associative, then \mathbf{A} is a Cayley division algebra over its centre \mathbf{Z}.

Throughout this paper we assume char $\mathbf{A} \neq \mathbf{2}$ and we restrict ourselves to the MK-planes $\mathbf{M}(\mathcal{A})$

Blunck [8] gives the following algebraic definition of the cross-ratio for the points on the line $g:=[1,0,0]$ in $\mathbf{M}(\mathcal{A})$.

$$
\begin{aligned}
& (A, B ; C, D):=(a, b ; c, d) \\
& =<\left((a-d)^{-1}(b-d)\right)\left((b-c)^{-1}(a-c)\right)> \\
& (Z, B ; C, D):=\left(z^{-1}, b ; c, d\right) \\
& =<\left((1-d z)^{-1}(b-d)\right)\left((b-c)^{-1}(1-c z)\right)> \\
& (A, Z ; C, D):=\left(a, z^{-1} ; c, d\right) \\
& =<\left((a-d)^{-1}(1-d z)\right)\left((1-c z)^{-1}(a-c)\right)> \\
& (A, B ; Z, D):=\left(a, b ; z^{-1}, d\right) \\
& =<\left((a-d)^{-1}(b-d)\right)\left((1-z b)^{-1}(1-z a)\right)> \\
& (A, B ; C, Z):=\left(a, b ; c, z^{-1}\right) \\
& =<\left((1-z a)^{-1}(1-z b)\right)\left((b-c)^{-1}(a-c)\right)>,
\end{aligned}
$$

where $A=(0, a, 1), B=(0, b, 1), C=(0, c, 1), D=(0, d$, 1), $Z=(0,1, z)$ are pairwise non-neighbour points of g and $<x\rangle=\left\{y^{-1} x y: y \in \mathcal{A}\right\}$.

In [7, Theorem 2], it is shown that the transformations

$$
\begin{aligned}
t_{u}(x) & =x+u ; u \in \mathcal{A} \\
r_{u}(x) & =x u ; u \in \mathcal{A} \backslash \mathbf{I} \\
i(x) & =x^{-1} \\
l_{u}(x) & =u x=\left(i r_{u}^{-1} i\right)(x) ; u \in \mathcal{A} \backslash \mathbf{I}
\end{aligned}
$$

which are defined on the line g preserve cross-ratios. In [6, Corollary (iii)], it is also shown that the group generated by these transformations, which is denoted by Λ, equals to the group of projectivities of a line in $\mathbf{M}(\mathcal{A})$. The elements preserving cross-ratio of the group Λ defined on g will act a very important role in the proof of Theorem 3.1.

We give the following result from [1, Theorem 8]. This result states a simple way for calculation of the cross-ratio of the points on any line in $\mathbf{M}(\mathcal{A})$.

Theorem 2.2: Let $\{O, U, V, E\}$ be the basis of $\mathbf{M}(\mathcal{A})$ where $O=(0,0,1), U=(1,0,0), V=(0,1,0), E=(1,1,1)$ (see [3, Section 4]). Then, according to types of lines, the cross-ratio of the points on the line l can be calculated as follows:

If $A, B, C, D Z$ are the pairwise non-neighbour points
(a) of the line $l=[m, 1, k]$, where $A=(a, a m+k, 1), B=$ $(b, b m+k, 1), C=(c, c m+k, 1), D=(d, d m+k, 1)$ are not near to the line $U V=[0,0,1]$ and $Z=(1, m+$ $z p, z)$ is near to $U V$;
(b) of the line $l=[1, n, p]$, where $A=(a n+p, a, 1), B=$ $(b n+p, b, 1), C=(c n+p, c, 1), D=(d n+p, d, 1)$ are not neighbour to V and $Z=(n+z p, 1, z) \sim V$;
(c) of the line $l=[q, n, 1]$, where $A=(1, a, q+a n), B=$ $(1, b, q+b n), C=(1, c, q+c n), D=(1, d, q+d n)$ are not neighbour to V and $Z=(z, 1, z q+n) \sim V$;

ISSN: 2517-9934
Vol:4, No:8, 2010
then

$$
\begin{aligned}
(A, B ; C, D) & =(a, b ; c, d) \\
(Z, B ; C, D) & =\left(z^{-1}, b ; c, d\right) \\
(A, Z ; C, D) & =\left(a, z^{-1} ; c, d\right) \\
(A, B ; Z, D) & =\left(a, b ; z^{-1}, d\right) \\
(A, B ; C, Z) & =\left(a, b ; c, z^{-1}\right) .
\end{aligned}
$$

We can give an important theorem, from [1, Theorem 9], about cross-ratio.

Theorem 2.3: In $\mathbf{M}(\mathcal{A})$, perspectivities preserve cross-ratios.

Now we give a definition in $\mathbf{M}(\mathcal{A})$, well known from the case of Moufang planes [10]. In $\mathbf{M}(\mathcal{A})$, any pairwise nonneighbour four points $A, B, C, D \in l$ are called as harmonic if $(A, B ; C, D)=<-1>$ and we let $h(A, B, C, D)$ represent the statement: A, B, C, D are harmonic.

III. On Cross-Ratio in $\mathrm{M}(\mathcal{A})$.

In this section we will give a collineation of $\mathbf{M}(\mathcal{A})$, from [2]. Next, we show that the collineation preserve cross-ratios. Now we start with giving the collineation of $\mathbf{M}(\mathcal{A})$, where $w, z, q, n \in \mathbf{A}$:For any $s \notin \mathbf{I}$, the map \mathbf{J}_{s} transforms points and lines as follows:

$$
\begin{aligned}
(x, y, 1) & \rightarrow\left(y s^{-1}, x s, 1\right) \\
(1, y, z \varepsilon) & \rightarrow\left(1, s y^{-1} s, s\left(y^{-1} z\right)\right) \text { if } y \notin \mathbf{I} \\
(1, y, z \varepsilon) & \rightarrow\left(s^{-1} y s^{-1}, 1, s^{-1} z\right) \text { if } y \in \mathbf{I} \\
(w \varepsilon, 1, z \varepsilon) & \rightarrow(1, s w s, s z)
\end{aligned}
$$

and

$$
\begin{aligned}
{[m, 1, k] } & \rightarrow\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right] \text { if } m \notin \mathbf{I} \\
{[m, 1, k] } & \rightarrow\left[1, s^{-1} m s^{-1}, k s^{-1}\right] \text { if } m \in \mathbf{I} \\
{[1, n \varepsilon, p] } & \rightarrow[s n s, 1, p s] \\
{[q \varepsilon, n \varepsilon, 1] } & \rightarrow\left[s n, s^{-1} q, 1\right] .
\end{aligned}
$$

Now we are ready to give the following
Theorem 3.1: The collineation J_{s} preserve cross-ratio.
Proof: Let A, B, C, D and Z be the points with the property given in the statement of Theorem 2.2. Then, it is obvious that

$$
\begin{align*}
(A, B ; C, D) & =(a, b ; c, d) \\
(Z, B ; C, D) & =\left(z^{-1}, b ; c, d\right) \\
(A, Z ; C, D) & =\left(a, z^{-1} ; c, d\right) \tag{1}\\
(A, B ; Z, D) & =\left(a, b ; z^{-1}, d\right) \\
(A, B ; C, Z) & =\left(a, b ; c, z^{-1}\right),
\end{align*}
$$

where $z \in \mathbf{I}$. In this case we must find the effect of φ to the points of any line where φ is the collineations J_{s}.

Let $\varphi=\mathrm{J}_{s}$. If $l=[m, 1, k]$, then

$$
\begin{aligned}
\varphi(X)= & \varphi(x, x m+k, 1) \\
= & \left((x m+k) s^{-1}, x s, 1\right) \\
\varphi(Z)= & \varphi(1, m+z k, z) \\
= & \left(1, s(m+z k)^{-1} s, s\left((m+z k)^{-1} z\right)\right) \\
& \text { for } m+z k \notin \mathbf{I} \\
\varphi(Z)= & \varphi(1, m+z k, z) \\
= & \left(s^{-1}(m+z k) s^{-1}, 1, s^{-1} z\right), \\
& \text { for } m+z k \in \mathbf{I} \\
\varphi(l)= & {\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right] \text { for } m \notin \mathbf{I} } \\
\varphi(l)= & {\left[1, s^{-1} m s^{-1}, k s^{-1}\right] \text { for } m \in \mathbf{I} . }
\end{aligned}
$$

In this case, from (a) of Theorem 2.2, the cross-ratio of the points of $\left[\mathrm{sm}^{-1} \mathrm{~s}, 1,-\left(\mathrm{km}^{-1}\right) \mathrm{s}\right]$ is as follows:

$$
\begin{aligned}
& (\varphi(A), \varphi(B) ; \varphi(C), \varphi(D)) \\
= & \left((a m+k) s^{-1},(b m+k) s^{-1} ;\right. \\
& \left.(c m+k) s^{-1},(d m+k) s^{-1}\right) \\
= & \sigma(a, b ; c, d) \\
& (\varphi(Z), \varphi(B) ; \varphi(C), \varphi(D)) \\
= & \left(\left(s\left((m+z k)^{-1} z\right)\right)^{-1},(b m+k) s^{-1} ;\right. \\
& \left.(c m+k) s^{-1},(d m+k) s^{-1}\right) \\
= & \sigma\left(z^{-1}, b ; c, d\right)
\end{aligned}
$$

where $\sigma=r_{m^{-1}} \circ t_{-k} \circ r_{s} \in \Lambda$. From (b) of Theorem 2.2, the cross-ratio of the points of $\left[1, s^{-1} \mathrm{~ms}^{-1}, \mathrm{ks}^{-1}\right]$ is as follows:

$$
\begin{aligned}
& (\varphi(A), \varphi(B) ; \varphi(C), \varphi(D)) \\
& =(a s, b s ; c s, d s)=\sigma(a, b ; c, d) \\
& (\varphi(Z), \varphi(B) ; \varphi(C), \varphi(D)) \\
& =\left(z^{-1} s, b s ; c s, d s\right)=^{\sigma}\left(z^{-1}, b ; c, d\right),
\end{aligned}
$$

where $\sigma=r_{s^{-1}} \in \Lambda$.
If $l=[1, n, p]$, then

$$
\begin{aligned}
& \varphi(X)=\varphi(x n+p, x, 1)=\left(x s^{-1},(x n+p) s, 1\right) \\
& \varphi(Z)=\varphi(n+z p, 1, z)=(1, s(n+z p) s, s z)
\end{aligned}
$$

and

$$
\varphi(l)=[s n s, 1, p s] .
$$

In this case, from (a) of Theorem 2.2, the cross-ratio of the points of $[s n s, 1, p s]$ is as follows:

$$
\begin{aligned}
& (\varphi(A), \varphi(B) ; \varphi(C), \varphi(D)) \\
& =\left(a s^{-1}, b s^{-1} ; c s^{-1}, d s^{-1}\right)=^{\sigma}(a, b ; c, d) \\
& (\varphi(Z), \varphi(B) ; \varphi(C), \varphi(D)) \\
& =\left(z^{-1} s^{-1}, b s^{-1} ; c s^{-1}, d s^{-1}\right)=^{\sigma}\left(z^{-1}, b ; c, d\right),
\end{aligned}
$$

where $\sigma=r_{s} \in \Lambda$. If $l=[q, n, 1]$, then

$$
\begin{aligned}
& \varphi(X)= \varphi(1, x, q+x n)=\left(1, s x^{-1} s, s\left(x^{-1}(q+x n)\right)\right) \\
& \text { for } x \notin \mathbf{I} \\
& \varphi(X)= \varphi(1, x, q+x n)=\left(s^{-1} x s^{-1}, 1, s^{-1}(q+x n)\right) \\
& \text { for } x \in \mathbf{I} \\
& \varphi(Z)=\varphi(z, 1, z q+n)=(1, s z s, s(z q+n))
\end{aligned}
$$

and

$$
\varphi(l)=\left[s n, s^{-1} q, 1\right] .
$$

In this case, from (c) of Theorem 2.2, the cross-ratio of the points of $\left[s n, s^{-1} q, 1\right]$ is as follows:

$$
\begin{aligned}
& (\varphi(A), \varphi(B) ; \varphi(C), \varphi(D)) \\
= & \left(s a^{-1} s, s b^{-1} s ; s c^{-1} s, s d^{-1} s\right) \\
= & \sigma(a, b ; c, d), \\
& (\varphi(Z), \varphi(B) ; \varphi(C), \varphi(D)) \\
= & \left(s z s, s b^{-1} s ; s c^{-1} s, s d^{-1} s\right) \\
= & \sigma\left(z^{-1}, b ; c, d\right),
\end{aligned}
$$

where $\sigma=i \circ l_{s^{-1}} \circ r_{s^{-1}} \in \Lambda$. Consequently, by considering other all cases we get

$$
\begin{aligned}
(\varphi(A), \varphi(B) ; \varphi(C), \varphi(D)) & =(a, b ; c, d) \\
(\varphi(Z), \varphi(B) ; \varphi(C), \varphi(D)) & =\left(z^{-1}, b ; c, d\right) \\
(\varphi(A), \varphi(Z) ; \varphi(C), \varphi(D)) & =\left(a, z^{-1} ; c, d\right) \\
(\varphi(A), \varphi(B) ; \varphi(Z), \varphi(D)) & =\left(a, b ; z^{-1}, d\right) \\
(\varphi(A), \varphi(B) ; \varphi(C), \varphi(Z)) & =\left(a, b ; c, z^{-1}\right)
\end{aligned}
$$

for collineation φ. Combining the last result and the result of (1), the proof is completed.

Now we are ready to give the other results of the paper. On \mathcal{A} we give the following theorem, an alternate definition of harmonicty and given for an alternative ring \mathbf{A} with $\operatorname{char} \mathbf{A} \neq \mathbf{2}$.

Theorem 3.2: Let $a, b, c, d \in \mathcal{A}$. Then $h(a, b, c, d)$ if and only if

1) if $a, b, c, d \in \mathcal{A}, 2(a-b)^{-1}=(a-c)^{-1}+(a-d)^{-1}$.
2) if $a=z^{-1}, 2(d-c)^{-1}+(c-b)^{-1}=z \in \mathbf{I}$.
3) if $b=z^{-1}, 2(c-d)^{-1}+(d-a)^{-1}=z \in \mathbf{I}$.
4) if $c=z^{-1}, 2(b-a)^{-1}+(d-b)^{-1}=z \in \mathbf{I}$.
5) if $d=z^{-1}, 2(a-b)^{-1}+(c-a)^{-1}=z \in \mathbf{I}$.

Proof: 1. From the definition of cross-ratio,
$h(a, b, c, d)=\left((a-d)^{-1}(b-d)\right)\left((b-c)^{-1}(a-c)\right)=-1$.
By direct computation (with Lemma 2.1),

$$
\begin{aligned}
& (a-d)^{-1}(b-d)=-(a-c)^{-1}(b-c) \\
& (a-d)^{-1}(b-a+a-d)=-(a-c)^{-1}(b-a+a-c) \\
& (a-d)^{-1}(b-a)+1=-(a-c)^{-1}(b-a)-1 \\
& 2=-(a-c)^{-1}(b-a)-(a-d)^{-1}(b-a) \\
& 2(a-b)^{-1}=(a-c)^{-1}+(a-d)^{-1} .
\end{aligned}
$$

2. From the definition of cross-ratio,

$$
\begin{aligned}
& h\left(z^{-1}, b, c, d\right) \\
& =\left((1-d z)^{-1}(b-d)\right)\left((b-c)^{-1}(1-c z)\right)=-1 .
\end{aligned}
$$

By direct computation (Lemma 2.1),

$$
\begin{aligned}
& (b-c)^{-1}(1-c z)=-(b-d)^{-1}(1-d z) \\
& (b-c)^{-1}(1-c z)=-(b-d)^{-1}(1-c z+c z-d z) \\
& (b-c)^{-1}(1-c z)=-(b-d)^{-1}(1-c z) \\
& -(b-d)^{-1}((c-d) z) \\
& \left((b-c)^{-1}+(b-d)^{-1}\right)(1-c z)=-(b-d)^{-1}((c-d) z) \\
& (b-c)^{-1}+(b-d)^{-1}=-\left((b-d)^{-1}((c-d) z)\right)(1+c z) \\
& (b-c)^{-1}+(b-d)^{-1}=-(b-d)^{-1}((c-d) z) \\
& (b-d)(b-c)^{-1}+1=-(c-d) z \\
& (b-c+c-d)(b-c)^{-1}+1=-(c-d) z \\
& 2+(c-d)(b-c)^{-1}=-(c-d) z \\
& 2(c-d)^{-1}+(b-c)^{-1}=-z \\
& 2(d-c)^{-1}+(c-b)^{-1}=z \in \mathbf{I},
\end{aligned}
$$

where $z z=0$ since $z \in \mathbf{I}$.
3. The proof is same the proof of 2 .
4. From the definition of cross-ratio,

$$
\begin{aligned}
& h\left(a, b, z^{-1}, d\right) \\
& =\left((a-d)^{-1}(b-d)\right)\left((1-z b)^{-1}(1-z a)\right)=-1 .
\end{aligned}
$$

By direct computation (Lemma 2.1),

$$
\begin{aligned}
& (1-z b)^{-1}(1-z a)=-(b-d)^{-1}(a-d) \\
& (1+z b)(1-z a)=-(b-d)^{-1}(a-b+b-d) \\
& 1+z b-z a=-(b-d)^{-1}(a-b)-1 \\
& 2+z(b-a)=-(b-d)^{-1}(a-b) \\
& 2(b-a)^{-1}+z=(b-d)^{-1} \\
& 2(b-a)^{-1}+(d-b)^{-1}=z \in \mathbf{I},
\end{aligned}
$$

where $(1-z b)^{-1}=1+z b$ and $z z=0$.
5. The proof is same the proof of 4 .

Now, we give the following theorem, given as without proof in [10] for \mathbf{A}.

Theorem 3.3: On \mathcal{A}, the followings is valid:

1) $h\left(0, a, 0^{-1}, \frac{a}{2}\right)$
2) $h\left(a, b, 0^{-1}, \frac{a+b}{2}\right)$
3) $h\left(a,-a, 0^{-1}, 0\right)$
4) $h\left(1,-1, a, a^{-1}\right)$
5) $h\left(a^{2}, 1, a,-a\right)$

Proof: 1. By the definition of cross-ratio, since
$\left(0, a, 0^{-1}, \frac{a}{2}\right)=\left(0-\frac{a}{2}\right)^{-1}\left(a-\frac{a}{2}\right)=\frac{-2}{a} \frac{a}{2}=-1$,
then $h\left(0, a, 0^{-1}, \frac{a}{2}\right)$.
2. By the definition of cross-ratio, since

$$
\begin{aligned}
\left(a, b, 0^{-1}, \frac{a+b}{2}\right) & =\left(a-\frac{a+b}{2}\right)^{-1}\left(b-\frac{a+b}{2}\right) \\
& =\left(\frac{a-b}{2}\right)^{-1}\left(\frac{b-a}{2}\right)=-1
\end{aligned}
$$

then $h\left(a, b, 0^{-1}, \frac{a+b}{2}\right)$.
3. By the definition of cross-ratio, since

$$
\left(a,-a, 0^{-1}, 0\right)=(a-0)^{-1}(-a-0)=-1
$$

then $h\left(a,-a, 0^{-1}, 0\right)$.
4. By the definition of cross-ratio, since

$$
\left.\begin{array}{rl}
\left(1,-1, a, a^{-1}\right)= & \left(\left(1-a^{-1}\right)^{-1}\left(-1-a^{-1}\right)\right) \\
& \left((-1-a)^{-1}(1-a)\right) \\
= & \left(\left(a^{-1}-1\right)^{-1}-\left(1-a^{-1}\right)^{-1} a^{-1}\right) \\
& \left((-1-a)^{-1}+(1+a)^{-1} a\right) \\
= & \left(\left(a^{-1}-1\right)^{-1}-\left(a\left(1-a^{-1}\right)\right)^{-1}\right) \\
& \left((-1-a)^{-1}+\left(a^{-1}(1+a)\right)^{-1}\right) \\
= & \left(\left(a^{-1}-1\right)^{-1}-(a-1)^{-1}\right) \\
& \left(-(1+a)^{-1}+\left(a^{-1}+1\right)^{-1}\right) \\
= & \left(a^{-1}-1\right)^{-1}\left(a^{-1}+1\right)^{-1}-(1+a)^{-1}\left(\left(a^{-1}+1\right)^{-1}-(1+a)^{-1}\right) \\
& \left.(1+a)^{-1}-(a-1)^{-1}\left(a^{-1}+1\right)^{-1}\right) \\
= & \left(a^{-1}+1\right)^{-1}-\left(a^{-1}-1\right)^{-1} \\
= & \left(\left(a^{-1}+1\right)\left(a^{-1}-a\right)^{-1}\left(a-a^{-1}\right)\right. \\
& -\left((1+a)\left(a^{-1}-1\right)\right)^{-1} \\
& -\left(\left(a^{-1}+1\right)(a-1)\right)^{-1} \\
& +((1+a)(a-1))^{-1} \\
= & \left(a^{-1}\right. \\
& -\left(a^{-1} a^{-1}-a^{-1}+a^{-1}-1\right)^{-1} \\
& -\left(a^{-1}-1+a^{-1}-1\right)^{-1}-\left(a^{-1}-a a^{-1}-a\right)^{-1} \\
= & \left(a^{-1}\left(a^{-1}-a\right)\right)^{-1}-\left(a^{-1}-a\right)^{-1} \\
= & \left(a\left(a^{-1}-a\right)\right)^{-1} \\
=10] \\
=1
\end{array}\right)
$$

then $h\left(1,-1, a, a^{-1}\right)$.
5. By the definition of cross-ratio, since

$$
\begin{aligned}
\left(a^{2}, 1, a,-a\right) & =\left(\left(a^{2}+a\right)^{-1}(1+a)\right)\left((1-a)^{-1}\left(a^{2}-a\right)\right) \\
& =\left(((a+1) a)^{-1}(1+a)\right)\left((1-a)^{-1}((a-1) a)\right) \\
& =\left(a^{-1}(a+1)^{-1}(1+a)\right)\left((1-a)^{-1}(a-1) a\right) \\
& =a^{-1}(-a) \\
& =-1
\end{aligned}
$$

