
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:5, 2013

834
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Abstract—The algorithms of convex hull have been extensively
studied in literature, principally because of their wide range of
applications in different areas. This article presents an efficient
algorithm to construct approximate convex hull from a set of n points
in the plane in O(n+ k) time, where k is the approximation error
control parameter. The proposed algorithm is suitable for applications
preferred to reduce the computation time in exchange of accuracy
level such as animation and interaction in computer graphics where
rapid and real-time graphics rendering is indispensable.
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I. INTRODUCTION

THE construction of planar convex hull is one of the
most fundamental problems in computational geometry.

The applications of convex hull spread over large number
of fields including pattern recognition, regression, collision
detection, area estimation, spectrometry, topology, etc. For
instance, computer animation, the most crucial section of
computer gaming, requires fast approximation for real-time
response. Consequently, it is evidential from literature that
numerous studies focus on fast approximation of different
geometric structures in computer graphics [1], [2]. Moreover,
the construction of exact and approximate convex hull is used
as a preprocessing or intermediate step to solve many problems
in computer graphics [3], [4].

Convex hull for a given finite set P ⊂ Rd of n points where
Rd denotes the d-dimensional Euclidean space, is defined as
the smallest convex set that contains all the n points. A set
S ⊂ Rd is convex if for two arbitrary points a, b ∈ S, the line
segment ab is entirely contained in the set S. Alternatively, the
convex hull can be defined as the intersection of all half-spaces
(or half-planes in R2) containing P . The main focus of this
article is limited on the convex hull in Euclidean plane R2.

II. PREVIOUS WORK

Because of the importance of convex hull, it is natural to
study for improvement of running time and storage require-
ments of the convex hull algorithms in different Euclidean
spaces. Graham [5] published one of the fundamental algo-
rithms of convex hull, widely known as Graham’s scan as early
as 1972. This is one of the earliest convex hull algorithms
with O(n log n) worst-case running time. Graham’s algorithm
is asymptotically optimal since Ω(n log n) is the lower bound
of planar convex hull problem. It can be shown [6] that
Ω(n log n) is a lower bound of a similar but weaker problem
of determining the points belonging to the convex hull, not
necessarily producing them in cyclic order.
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However, all of these lower bound arguments assume that
the number of hull vertices h is at least a fraction of n.
Another algorithm due to Jarvis [7] surpasses the Graham’s
scan algorithm if the number of hull vertices h is substantially
smaller than n. This algorithm with O(nh) running time is
known as Jarvis’s march. There is a strong relation between
sorting algorithm and convex hull algorithm in the plane.
Several divide-and-conquer algorithms including MergeHull
and QuickHull algorithms of convex hull modeled after the
sorting algorithms [8] and the first algorithm Graham’s [5]
scan uses explicit sorting of points.

In 1986, Kirkpatrick and Seidel [9] proposed an algorithm
that computes the convex hull of a set of n points in the plane
in O(n log h) time. Their algorithm is both output sensitive and
worst case optimal. Later, a simplification of this algorithm [9]
was obtained by Chan [10]. In the following year Melkman [11]
presented a simple and elegant algorithm to construct the
convex hull for simple polyline. This is one of the on-line
algorithms which construct the convex hull in linear time.

Approximation algorithms for convex hull are useful for
applications including area estimation of complex shapes that
require rapid solutions, even at the expense of accuracy of
constructed convex hull. Based on approximation output, these
algorithms of convex hull could be divided into three groups –
near, inner, and outer approximation algorithms. Near, inner,
and outer approximation algorithms compute near, inner, and
outer approximation of the exact convex hull for some point
set respectively.

In 1982, Bentley et al. [12] published an approximation
algorithm for convex hull construction with O(n+ k) running
time. Another algorithm due to Soisalon-Soininen [13] which
uses a modified approximation scheme of [12] and has the
same running time and error bound. Both of the algorithms are
the inner approximation of convex hull algorithm. The proposed
algorithm in this article is a near approximation algorithm of
O(n+ k) running time.

III. APPROXIMATION ALGORITHM

Let P ⊂ R2 be the finite set of n ≥ 3 points in general
position and the (accurate) convex hull of P be CH(P ). Kavan,
Kolingerova, and Zara [14] proposed an algorithm with O(n+
k2) running time which partitions the plane R2 into k sectors
centered in the origin. Their algorithm requires the origin to
be inside the convex hull. (It is possible to choose a point
p ∈ P and translate all the other points of P accordingly using
additional steps in their algorithm). Conversely, we partition
the plane R2 into k vertical sector pair with equal central
angle α in the origin and for our algorithm the origin O could
be located outside of the convex hull. The sets represent the
vertically opposite sectors that form the vertical sector pairs
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defined as

S⊕
i = {p ∈ R2 : atan2(p) ∈ [αi, α(i+ 1))}
S�
i = {p ∈ R2 : atan2(p) ∈ [π + αi, π + α(i+ 1))}

where, i = 0, 1, . . . , k − 1 and the central angle α = π/k.
Then, the sets s⊕i and s�i denote the points belonging to the
set P in sectors S⊕

i and S�
i respectively. Formally,

s⊕i = S⊕
i ∩ P

s�i = S�
i ∩ P

A pair of unit vectors u⊕i and u�i obtain in ith vertical sector
pair as

u⊕i =
(
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αi+

α

2

)
, sin

(
αi+

α

2

))
u�i =

(
− cos
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αi+

α
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)
,− sin

(
αi+

α
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))
The maximum projection magnitudes in the directions of u⊕i
and u�i are

m⊕
i = max

p∈s⊕i
〈u⊕i , p〉

m�
i = max

p∈s�i
〈u�i , p〉

The definition of max function is extend to return −∞ for

Fig. 1. An example of convex hull CH16 constructed using proposed
algorithm based on a set of 50 points.

no parameter. The sets of points which provide the maximum
projection magnitude in the sectors of ith vertical sector pair
are

M⊕
i = {p ∈ s⊕i : 〈u⊕i , p〉 = m⊕

i }
M�
i = {p ∈ s�i : 〈u�i , p〉 = m�

i }
The vectors that produce the maximum magnitude in the
directions of u⊕i and u�i for some points in the ith vertical
sector pair are

v⊕i = max

(
max

p∈(s�i −M�
i )

〈u⊕i , p〉,m⊕
i

)
u⊕i

v�i = max

(
max

p∈(s⊕i −M⊕
i )

〈u�i , p〉,m�
i

)
u�i

The magnitude of the vectors v⊕i and v�i could be ±∞ for
the ith vertical sector pair containing less than two points. The
sets V ⊕ and V � containing all the finite vectors in the ranges
[0, π) and [π, 2π), are

V ⊕ =
{
v⊕i : ‖v⊕i ‖ 
=∞

}k−1

i=0

V � =
{
v�i : ‖v�i ‖ 
=∞

}k−1

i=0

Let, V = V ⊕ ∪ V � and V contains at least three terminal
points of the vectors in general position to construct the convex
hull. The convex hull approximation of k vertical sector pairs
according to the proposed algorithm in this article is

CHk(P ) = CH
{
(wx, wy) ∈ R2 : w ∈ V }

IV. IMPLEMENTATION

The input of the algorithm P ⊂ R2 is a set of n ≥ 3 points
in general position. For simplicity, we assume that the origin
O /∈ P and k ≥ 2. (This assumption can be achieved by taking
a point arbitrarily close to the origin instead of the origin itself,
within the upper bound of error calculated in Section V).

APPROXIMATE-CONVEX-HULL(P, k)

01. α← π/k

02. for i← 0 to k − 1

03. Ui ← (cos(αi+ α/2), sin(αi+ α/2))

04. Ui+k ← −Ui
05. Mi+k ←Mi ← −∞
06. for each p ∈ P do
07. i← atan2(p)/α�
08. t← 〈Ui, p〉
09. if Mi ≤ t then Mi ← t

10. else Mi+k ← max(Mi+k,−t)
11. V ← 〈〉
12. f ← anglex(M)

13. for i← f to f + 2k − 1

14. if Mi+k ∈ (−∞, 0) then V ← V ∪ 〈Mi+kUi+k〉
15. if Mi ∈ (0,∞) then V ← V ∪ 〈MiUi〉
16. return MELKMAN-CONVEX-HULL(V )

Fig. 2. The proposed algorithm to compute an approximate convex hull in
O(n+ k) time from inputs P and k where P ⊂ R2 is a set of n points in
the plane and k is the number of vertical sector pair partitioning the plane.

We also assume that at least two vertical sector pairs together
contains minimum three points (where none of these two
are empty). The assumption can be reduced to one of the
requirements of minimum three points input (i.e., |P | ≥ 3)
of convex hull. To illustrate that, let us consider p and q to
be two points in P such that ∠pOq ≤ π − α where O is the
origin. Such two points do exist if no three points are collinear
in P (i.e., the points of P are in general position). If Ot is the
bisector of ∠pOq, then adding the angle of Ot from positive
x – axis as an offset to every vertical sector pair ensures that
all the input points cannot be in the same vertical sector pair.
Thus, the assumption is satisfied. Alternatively, if less than
three absolute values in M are finite, then for each Mi ∈M ,
assign Mi cosα to Mi−1 and Mi+1 where these are infinite.
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Convex hull approximation of circle

Fig. 3. The graph showing approximation error of a circle area with respect
to error control parameter k where the number of input points is n = 16×103

lying on a circle of radius 4 units.

(The next paragraph contains details about M .) Therefore, the
number of points in V must be at least three.

A circular array U is used to contain the k pairs of
unit vectors of all the k vertical sector pairs and another
circular array M is used to hold the number of k pairs of
maximum projection magnitude in all the k vertical sector
pairs. Both circular arrays have the same size of 2k and
use zero based indexing scheme. The function atan2 is a
variation of function arctan with point as a parameter. The
function returns the angle in radians between the point and
the positive x – axis of the plane in the range of [0, 2π).
The function anglex searches sequentially for the index of
maximum angular distance between two consecutive positive
finite vectors (computed using projection magnitude with index
referring angle). If the index is i such that maximum angle
occurs in between i and j, the anglex function returns j. The
final convex hull is constructed using Melkman’s [11] algorithm
from set of V points which are the terminal points of finite
vectors computed in steps 14 and 15. If the first three points
of V are collinear, displacing one of these points within the
error bound solves the problem.

Since the vertices of the convex hull produced by the
proposed algorithm are not necessarily in the input point set P ,
the algorithm cannot be applied straight away to solve some
other problems. Let us consider another circular array Q of
2k size which used to contain the points generating the inner
products of M . Adding the point Qj instead of MjUj to the
sequence V in steps 14 and 15 ensures that the vertices of the
convex hull will be the points from P . These modifications

of the algorithm allow us to solve some problems including
approximate farthest-pair problem but increase the upper bound
of error (described in Section V) to r sin(π/k).

V. ERROR ANALYSIS

There are different schemes for measuring the error of an
approximation of the convex hull. We measured the error as
distance from point set of accurate convex hull CH(P ). The
distance of an arbitrary point x from a set S is defined as

dist(x, S) = inf{‖x− y‖ : y ∈ S}
Formally the approximation error E can be defined as

E = sup{dist(p, CH(P )) : p ∈ CHk(P )}
It is sufficient to determine the upper bound of error E of

Fig. 4. The approximation error of the proposed algorithm measured as a
distance TQ of the point Q lying outside of the approximate convex hull with
an edge AB.

the approximate convex hull CHk(P ). Let, Q be be a point
lying outside of the convex hull CHk(P ) and O be the origin.
Suppose that, AB is an edge of the approximate convex hull
(as shown in Figure 4). Therefore, the distance of the point Q
from the CHk(P ) is

TQ = AQ sin∠TAQ

The distance of the point Q from vertex A is AQ =
OQ sin∠AOQ. Thus,

TQ = OQ sin∠AOQ sin∠TAQ

Let, d = TQ and r = maxp∈P ‖p−O‖. Thus we obtain

d = OQ sin∠TAQ sin∠AOQ
≤ OQ sin

π

2
sin∠AOQ

≤ r sin π

2k

It follows that the minimum distance d directly depends on
k which is denoted as function d(k). Thus, the upper bound
of approximation error E is r sin(π/2k). If k approaches to
infinity, the CHk(P ) converges to CH(P ).

lim
k→∞

d(k) ≤ lim
k→∞

r sin
π

2k
= 0
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Fig. 5. The graph representing the relation between the error control parameter
k and upper bound of error E. The upper error bounds r sin(π/k) and
max(r tan(π/k), 2r sin(π/k)) are calculated in this article and in [14] (i.e.,
KKZ Algorithm) respectively where r is unit in the graph.

VI. CORRECTNESS

Theorem 1: The approximation algorithm produces the
convex hull from a set of points in R2 correctly within the
prescribed error bound.

Proof: Since, Melkman’s algorithm can construct the
convex hull correctly for points on a simple polygonal chain,
it suffices to prove that the sequence of points V denotes a
simple polygonal chain. (Melkman [11] published the on-line
algorithm of convex hull with formal proof of correctness
in 1987). Suppose that, the plane R2 is partitioned into

Fig. 6. The proof of correctness of the algorithm that con-
sider both the simple and non-simple variation of polygonal chain
v�i−1v

⊕
i−1v

�
i v⊕i v�i+1v

⊕
i+1v

�
i+2v

⊕
i+2 with ∠h′

ih
′
i+1 < π and ∠h′

ih
′
i+1 ≥ π.

k vertical sector pairs which correspond to the sequence
S = 〈s0, s1, . . . , s2k−1〉 of 2k simple sectors. The sequence
S of sectors is ordered according to the angle measured
anticlockwise. If hi is a half-line (denoting the set of points on
the half-line) from the origin in the direction of the unit vector
of the sector si, then the sequence H = 〈h0, h1, . . . , h2k−1〉
represents all the half-lines correlated with the sequence S.
According to the algorithm all the points of V must be distinct
(as referred in steps 9 – 10) and lying on some of the half-
lines of H . The sequence of half-lines H ′ ⊆ H where each

contained at least one point from V , is

H ′ = 〈h′i ∈ H : h′i ∩ V 
= ∅〉
Each half-line h′i ∈ H ′ can contain at most two points of V .
Let, v�i , v

⊕
i ∈ (h′i ∩ V ) are points on each half-line h′i such

that ‖v�i − O‖ ≤ ‖v⊕i − O‖. If a half-line h′i contains only
one point of V , the length of virtual v�i v

⊕
i is zero with v�i

and v⊕i refer to the same point of V (e.g., h′i+2 contains only
one point in the Figure 6). Let ∠hihj denotes the angle from
hi to hj where hi and hj are half-lines from the origin. Since
the angle between two consecutive half-lines ∠h′ih′i+1 ≥ π/k
and O /∈ V (because t > 0 for our assumptions O /∈ P and
k ≥ 2 in the algorithm), no two line segments v�i v

⊕
i and v�j v

⊕
j

intersect each other, for all i 
= j. However, the line segment
v⊕i v

�
i+1 could cross the polygonal chain v�0 v

⊕
0 v

�
1 v

⊕
1 . . . v

�
i v

⊕
i

if the angle ∠hihi+1 ≥ π. The equation of ∠Ov⊕i v�i+1 (derived
using the law of sines and basic properties of triangle) also
illustrates this fact mathematically for �Ov⊕i v�i+1 (as shown
in the Figure 6)

∠Ov⊕i v�i+1

= arccot

(
Ov⊕i

Ov�i+1 sin∠v⊕i Ov�i+1

− cot∠v⊕i Ov�i+1

)

The solution with minimum magnitude of the above equation
is negative for π < ∠v⊕i Ov�i+1 < 2π, even if Ov⊕i > Ov�i+1.
Thus the line segment v⊕i v

�
i+1 could intersect with the

edges of the polygonal chain only if ∠v⊕i Ov�i+1 ≥ π. If
the maximum angle between two consecutive half-lines is
∠h′ih′i+1 for some i, then anglex function returns the index
i+ 1 that ensures the construction a simple polygonal chain
v�i+1v

⊕
i+1v

�
i+2v

⊕
i+2 . . . v

�
i+mv

⊕
i+m where m = |H ′| and all the

indices are modulo m. Thus the sequence of points V represents
a simple polygonal chain. (It is possible to prove the algorithm
obtained by interchanging the steps 14 and 15, using a similar
method).

Theorem 2: If n is the number of input points and k is the
number of vertical sector pairs in R2, then the running time
of the proposed algorithm is O(n+ k).

Proof: Let us estimate the running time for each part of the
algorithm to prove that the algorithm compute the approximate
convex hull in O(n+ k) time. It is clear that, the initialization
steps 2 – 5 take O(k) time. Since, the next loop of steps 6
– 10 iterates for each point p ∈ P , thus it takes O(n) time
considering constant time for floor function. According to the
description of anglex function in Section IV, the function can
be implemented in O(k) time because it requires 2k iterations
to compute the index. The loop of steps 13 – 15 takes O(k)
time and Melkman’s [11] algorithm runs in linear time. Steps
1 and 11 require constant time. Thus the running time of the
algorithm is O(n+ k).

VII. CONCLUSION

Geometric algorithms are frequently formulated under the
non-degeneracy assumption or general position assumption [15]
and the proposed algorithm in this article is also not an
exception. To make the implementation of the algorithm
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robust an integrated treatment for the special cases can be
applied. There are other general techniques called perturbation
schemes [16], [17] to transform the input into general position
and allow the algorithm to solve the problem on perturbed input.
Both symbolic perturbation and numerical (approximation)
perturbation (where perturbation error is consistent with the
error bound of the algorithm) can be used on the points of P
to eliminate degenerate cases.

APPENDIX

The article describes a near approximation algorithm for
convex hull however it is possible to extend the concept for
inner as well as outer approximation algorithms for convex hull.
An illustration of inner approximate convex hull algorithm is
shown in Figure 7.

INNER-APPROXIMATE-CONVEX-HULL(P, k)

01. α← π/k

02. for i← 0 to k − 1

03. Ui ← (cos(αi+ α/2), sin(αi+ α/2))

04. Ui+k ← −Ui
05. Qi+k ← Qi ← (0, 0)

06. Mi+k ←Mi ← −∞
07. for each p ∈ P do
08. i← atan2(p)/α�
09. t← 〈Ui, p〉
10. if Mi < t then (Qi,Mi)← (p, t)

11. elseif Mi+k < −t then (Qi+k,Mi+k)← (p,−t)
12. V ← 〈〉
13. f ← anglex(M)

14. for i← f to f + 2k − 1

15. if Mi ∈ (0,∞) then T ← 〈Qi〉 else T ← 〈〉
16. if Mi+k ∈ (−∞, 0) then T ← T ∪ 〈Qi+k〉
17. V ← V ∪ sort(T )

18. return MELKMAN-CONVEX-HULL(V )

Fig. 7. The proposed algorithm to compute an inner approximate convex hull
in O(n+ k) time from inputs P and k where P ⊂ R2 is a set of n points
in the plane and k is the number of vertical sector pair partitioning the plane.
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