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On Constructing a Cubically Convergent Numerical
Method for Multiple Roots

Young Hee Geum

Abstract—We propose the numerical method defined by

xn+1 = xn − λ
f(xn − μh(xn))

f ′(xn)
, n ∈ N,

and determine the control parameter λ and μ to converge cubically.
In addition, we derive the asymptotic error constant. Applying this
proposed scheme to various test functions, numerical results show a
good agreement with the theory analyzed in this paper and are proven
using Mathematica with its high-precision computability.

1.. INTRODUCTION

THE iteration methods to find the roots of nonlinear
equations have various applications in many science

problems[1,2,3,4]. Among them, the Newton’s method is one
of the most well-known iteration schemes and is modified by
many researchers[5,6,7].

Assume that a function f : C → C has a multiple root
α with integer multiplicity m ≥ 1 and is analytic in a small
neighborhood of α. We find an approximated α by a scheme

xn+1 = g(xn), n = 0, 1, 2, · · · , (1)

where g : C → C is an iteration function and x0 ∈ C is given.
Then we find an approximated α using an iterative method.
The roots of the equation are obtained using the following
scheme:

g(x) = x − λ
f(x − μh(x))

f ′(x)
(2)

where

h(x) =

{
f(x)/f ′(x), if x �= α
limx→α f(x)/f ′(x), if x = α.

(3)

For a given p ∈ N, we suppose that{ ∣∣∣ dp

dxp g(x)
∣∣∣
x=α

= |g(p)(α)| < 1, if p = 1.

g(i)(α) = 0 for 1 ≤ i ≤ p − 1 and g(p)(α) �= 0, if p ≥ 2.
(4)

Let z(x) = x− μh(x) and F (x) =
f(x−μh(x))

f ′(x) . Since g(x) is
continuous at x = α, g(x) is represented by

g(x) =

{
x − λF (x), if x �= α
x − λ limx→α F (x), if x = α.

(5)
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By Corollary 1 and Corollary 2, we have [f(z)]
(k)
x=α = 0, 0 ≤

k ≤ m − 1 and f(α) = f ′(α) = · · · = f(m−1)(α) =
0, f(m) �= 0. Using L’Hospital’s rule repeatedly, we have

lim
x→α

F (x) =
[f(z)]

(m−1)
x=α

[f ′(x)](m−1)
= 0 (6)

Corollary 1: Suppose f : C → C has a multiple root α with
a given integer multiplicity m ≥ 1 and is analytic in a small
neighborhood of α. Then the function h(x) and its derivatives
up to order 3 evaluated at α has the following properties with

θj = f(m+j)(α)
f(m)(α)

, j ∈ N:
(i) h(α) = 0

(ii) h′(α) = 1
m

(iii) h′′(α) = − 2
m2(m+1)θ1

(iv) h(3)(α) = 6
m3(m+1)

{
θ1

2 − 2m
m+2

θ2

}

From Eq.(2), we need to investigate some local properties
of g(x) in a small neighborhood of α. From the definition of
g(x) as described in Eq.(2), we rewrite

(g − x) · f ′(x) = −λf(z). (7)

where f = f(x), f ′ = f ′(x), z = x − μh(x) are used for
concise and the symbol ′ denotes the derivative with respect
to x. Using Eq.(4), our aim is to establish some relationships
between λ, m, g′(α), g′′(α) and g′′′(α), for maximum order
of convergence[8,9]. The next corollary is useful to calculate
g′(α), g′′(α) and g′′′(α).

Corollary 2: Let f stated in Corollary1 have a multiple root
α with a given multiplicity m ≥ 1. Let z(x) = x−μh(x) and
h(x) be defined by Eq.(3). Then the following hold:

dk

dxk f(z)

∣∣∣∣
x=α

= [f(z)](k)|x=α

=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ k ≤ m − 1

f(m)(α) · z′(α)m, if k = m

f(m+1)(α) · z′(α)m+1 + f(m) (α)
m(m+1)

2
· z′(α)m−1z′′(α),

if k = m + 1

f(m+2)(α) · z′(α)m+2 + f(m+1)(α)
(m+1)(m+2)

2
· z′(α)mz′′(α)

+f(m) (α) · Lm+2(α),

if k = m + 2

where Lk =
(
k
3

)
tk−4{t · (−μh′′′) + 3

4(k − 3)μ2h′′(α)
2
}.

Proof. Since f ′(α) = f ′′(α) = · · · = f(m−1)(α) = 0 and
f(m)(α) �= 0, the assertion follows.
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2.. CONVERGENCE ANALYSIS

In this section, we analyze the convergent properties of
this proposed scheme in Eq(7) and develop the order of
convergence and the asymptotic error constant in terms of
parameter μ and γ.
We differentiate both sides of Eq(7) with respect to x to obtain

(g′ − 1) · f ′ + (g − x) · f ′′(x) = −λ[f(z)](1) (8)

Let F1(x) = −(g−x)f ′′(x)−λ[f(z)](1)

f ′ . Since g′ is continuous at
α, we have

g′(x) − 1 =

{
F1(x), if x �= α
limx→α F1(x), if x = α,

(9)

Using Corollary 2 and g(α) = α, we have the following:

(g − x)f ′′(x)](k)
x=α =

k∑
j=0

(
k
j

)
(g − x)(j)f(k+2−j)

∣∣∣∣∣
x=α

=

{
0, if 0 ≤ k ≤ m − 2, m ≥ 2

(m − 1)(g′ − 1)f(m)(α), if k = m − 1,
(10)

[f(z)](1)

](k)

x=α

=

{
0, if 0 ≤ k ≤ m − 2, m ≥ 2

f (m)(α)(1− μ

m
)m, if k = m − 1,

(11)

Substituting Eq.(10) and Eq.(11) into Eq.(9) leads

g′(α) − 1 =

−(m − 1)(g′(α) − 1)f(m)(α) − λf(m)(α)(1 − μ
m )m

f(m)(α)

g′(α) − 1 = −(m − 1)(g′(α) − 1) − λ(1 −
μ

m
)m

To obtain g′(α) = 0, we get

m = λ

(
1 −

μ

m

)m

= λtm (12)

where tm = 1 − μ
m

.
We differentiate both sides of Eq(8) with respect to x to obtain

g′′ + 2(g′ − 1) · f ′′ + (g − x) · f(3) = −λ[f(z)](2) (13)

Let F2(x) = −2(g′−1)·f ′′−(g−x)·f(3)−λ[f(z)](2)

f ′ . We rewrite

g′′(x) =

{
F2(x), if x �= α
limx→α F2(x), if x = α,

(14)

We need the following manipulation:
(g′ − 1) · f ′′(x)]

(k)
x=α =

∑k
j=0

(
k
j

)
(g′ − 1)(j)f(k+2−j)|x=α

=

⎧⎨
⎩

0, if 0 ≤ k ≤ m − 3

(g′ − 1)f(m)(α), if k = m − 2

(g′ − 1)f(m+1)(α) + (m − 1)g′′f(m)(α), if k = m − 1,

(15)

(g − x) · f(3)]
(k)
x=α =

∑k
j=0 k

(
(
)

)
j(g − x)(j)f(k+3−j)|x=α

=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ k ≤ m − 3

(m − 2)(g′ − 1)f(m)(α), if k = m − 2

(m − 1)(g′ − 1)f(m+1)(α) + (m−1)(m−2)
2 g′′f(m)(α),

if k = m − 1,

(16)

[[f(z)](2) ](k)
x=α =

⎧⎨
⎩

0, if 0 ≤ k ≤ m − 3

f(m)(α)tm, if k = m − 2

f(m+1)(α)(tm−1 − tm + tm+1) if k = m − 1,
(17)

Applying Eq.(15), Eq.(16) and Eq.(17) into the numerator of
F2(x) yields
−2(g′ − 1)f ′′ − (g − x)f(3) − λ[f(z)](2)

=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ k ≤ m − 3

f(m)(α)(m − λtm), if k = m − 2

f(m+1)(α)[(m + 1) − λ(tm+1 − tm + tm−1)]

−g′′f(m)(α)
(m+2)(m−1)

2 if k = m − 1,

(18)

From Eq.(18) and Eq.(14), we obtain

g′′ =
2θ1

m(m + 1)
{(m + 1) − λ(tm+1 − tm + tm−1)} (19)

From Eq.(19), to have g′′(α) = 0 we get the following
relation,

m + 1 = λ(tm+1 − tm + tm−1) (20)

We differentiate both sides of Eq(6) with respect to x to obtain

g(3) ·f ′+3g′′·f ′′+3(g′−1)·f(3)+(g−x)·f(4) = −λ[f(z)](3).
(21)

We rewrite

g
(3)(x) =

{
F3(x), if x �= α
limx→α F3(x), if x = α,

(22)

where

F3(x) =
−3g′′f ′′ − 3(g′ − 1)f(3) − (g − x)f(4) − λ[f(z)](3)

f ′
.

We need the following calculation:

g′′ · f ′′]
(k)
x=α =

∑k
j=0

(
k
j

)
g(j+2)f(k+2−j)

∣∣∣∣∣
x=α

=

{
0, if 0 ≤ k ≤ m − 2

(m − 1)g(3)f (m)(α), if k = m − 1,
(23)

(g′ − 1) · f(3)]
(k)
x=α =

∑k
j=0

(
k
j

)
(g′ − 1)(j)f(k+3−j)|x=α

=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ k ≤ m − 4

(g′ − 1)f(m)(α), if k = m − 3

−f(m+1)(α), if k = m − 2

−f(m+2)(α) +
(m−1)(m−2)

2 g(3)f(m)(α), if k = m − 1,

(24)

(g − x) · f(4)]
(k)
x=α =

∑k
j=0

(
k
j

)
(g − x)(j)f(k+4−j)|x=α

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if 0 ≤ k ≤ m − 4

−(m − 3)f(m), if k = m − 3

−(m − 2)f(m+1) , if k = m − 2

−(m − 1)f(m+2)(α) +
(m−1)(m−2)(m−3)

6 g(3)f(m)(α),
if k = m − 1.

(25)

[[f(z)](3)]
(k)
x=α

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if 0 ≤ k ≤ m − 4

f(m)(α)(1 − μ

m
)m, if k = m − 3

f(m+1)(α)tm+1 + f(m)(α)
m(m+1)

2 tm−1z′′(α), if k = m − 2

f(m+2)(α)tm+2 + f(m+1)(α)m+2
m

(tm − tm+1)θ1

+f(m)(α)Lm+2(α), if k = m − 1,
(26)

Replacing the numerator of F3(x) by Eq.(23), Eq.(24),
Eq.(25) and Eq.(26) leads
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−3g′′f ′′](k)
x=α − 3(g′ − 1)f(3)](k)

x=α

−(g − x)f(4)](k)
x=α − λ[f(z)](3)](k)

x=α

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ k ≤ m − 4

f(m)(α)(m − λtm), if k = m − 3

f(m+1)(α){m + 1 − λ(tm+1 − tm + tm−1)}, if k = m − 2

−
(m−1)(m2+4m+6)

6 g(3)f(3) + f(m+2)(α)(m + 2)

−λ{f(m+2)(α)tm+2 − f(m+1)(α)θ1
m+2

m
(tm − tm+1)

−f(m)(α)Lm+2(α)}, if k = m − 1,

(27)

From Eq.(22) and Eq.(27), we have

g(3)(α) =
6

m(m + 1)(m + 2)[
θ2(m+2)−λ{θ2tm+2 +θ1

2(tm−tm+1)
m + 2

m
+Lm+2(α)}

]
. (28)

Consequently, to make g(3)(α) �= 0, we have the following
relation:

(m + 2)θ2 �= λ{θ2tm+2 + θ1
2(1 − t)tm

m + 2

m
+ Lm+2(α)} (29)

Lk =
(
k
3

)
tk−4{t · (−μh′′(α)) + 3

4
(k − 3)μ2h′′(α)

2
}{

m = λtm (2.5)

m + 1 = λ(tm+1 − tm + tm−1) (2.13)
(m + 2)θ2 �= λθ2tm+2 + θ1

2(1 − t)tm m+2
m

+ Lm+2(α)(30)

Theorem 1: Let f : C → C have a zero α with integer
multiplicity m ≥ 1 and be analytic in a small neighborhood
of α. Let θ1, θ2 be defined as in Corollary 1. Let t be a root
of ρ(t) defined in (20). Let x0 be an initial guess chosen in
a sufficiently small neighborhood of α. Then iteration method
(2) with μ = m(1 − t) has order 3 and its asymptotic error
constant η as follows:

η =
1

6
|g(3)(α)| =

1

m(m + 1)(m + 2)
|φ1θ

2
1 + φ2θ2|,

where φ1 = −tm−2λq1(t), φ2 = m+2−λtm−2q2(t), q1(t) =

− (m+2)(t−1)2{2(m+1)t−m+1}
2m(m+1)

and q2(t) = t(t3 − 2t + 2).

From Eq.(12) and Eq.(20), we get

mt2 − (2m + 1)t + m = 0

Typical cases for 1 ≤ m ≤ 4 are studied here and listed in
Table 1 to confirm Theorem 2.1.

TABLE I
VALUES ρ, t AND η FOR 1 ≤ m ≤ 4

m ρ(t) t η

1 t2 − 3t + 1 = 0 3±
√

5
2

1
6

[θ2(4 − 3t) + 2θ2
1(1 − t)]

2 2t2 − 5t + 2 = 0
5±√

9
4

1
24

[θ2
5t2+2t+4

t
+ θ2

1
7t2−2t+2

3t2
]

3 3t2 − 7t + 3 = 0 7±√
13

6
1
60

[θ2
−7t2+2t+6

t
+ 5θ2

1
4t3+t2−6t+1

4t2
]

4 4t2 − 9t + 4 = 0 9±√
17

8
1
20

[θ2
10t−8

t
+ θ2

1
30t3−49t2+28t−9

5t2
]

3.. ALGORITHM, NUMERICAL RESULTS AND DISCUSSIONS

The symbolic and computational ability of Mathematica[11]
leads us to a zero-finding algorithm based on the analysis
studied in Sections 1 and 2.

Algorithm 1 (Zero-Finding Algorithm)

Step 1. For k ∈ N ∪ {0}, construct iteration scheme (1) with
the given function f at a multiple zero α as stated in
Section 1.
Step 2. Set the minimum number of precision digits. With

ical asymptotic error constant η. Set the error range ε, the
maximum iteration number nmax and the initial value
x0. Compute f(x0) and |x0 − α |.
Step 3. Compute xn+1 in (1.1) for 0 ≤ n ≤ nmax and display
the computed values of n, xn,

f(xn), |xn − α|, |en+1/en
p| and η.

In these experiments, we choose 300 as the minimum
number of digits of precision by assigning $MinPrecision=250
in Mathematica to achieve the specified nominal accuracy. We
set the error bound ε to 0.5 × 10−235 for | xn − α | < ε and
evaluate the nth order derivative of the complicated nonlinear
functions using the Mathematica command D[f, {x, n}].

As an example for the convergence, we first illustrate the
order of convergence and the asymptotic error constant with
a function

f(x) = (x − 2) cos(π/x)

having a real zero α = 2.0 of multiplicity 2. We choose x0 =

apparently.
As a second example, we illustrate the order of convergence

and the asymptotic error constant with a function

f(x) = (x2 + 16) log(x2 + 17)2

having a multiple real zero α = 4i of multiplicity 3. We
0

clearly reflects the theoretical convergence presented in this
paper. The computed asymptotic error constants are in good
agreement with theoretical asymptotic error constants η up
to 10 significant digits. The computed root is rounded to be
accurate up to the 235 significant digits.

TABLE II
CONVERGENCE FOR f(x) = (x − 2) cos(π/x) WITH m = 2, α = 2

(t, μ, l) = (1/2,1,8)

n xn | xn − α | en+1/en
3 η

0 1.89 0.11 0.08820
1 1.99988197105842 0.000118029 0.08867689075 209479
2 1.99999999999985 1.45027× 10−13 0.08820274944
3 2.00000000000000 2.69043× 10−40 0.08820209479
4 2.00000000000000 1.71769× 10−120 0.08820209479
5 2.00000000000000 0.0 × 10−299

exact zero α or most accurate zero, supply the theoret-

1.89 as an initial guess. Table II verifies cubic convergence

choose x = 3.87i as an initial guess. TableIII shows a good
agreement with the theory developed in this paper. Table III
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TABLE III
CONVERGENCE FOR f(x) = (x2 + 16) log(x2 + 17)2 WITH

m = 3, α = 4i

(t, μ, l) = ( 7−
√

13
6

,1.30278, 648
(7−

√
13)3

)

n xn | xn − α | en+1/en
3 η

0 3.87i 0.130000 5.571505565
1 3.99405900753211i 0.00594099 2.704138583 05565
2 3.99999888367441i 1.11633× 10−6 5.323703698
3 4.00000000000000i 7.75071× 10−18 5.571456971
4 4.00000000000000 i 2.59416× 10−51 5.571505565
5 4.00000000000000 i 9.72665× 10−152 5.571505565
6 4.00000000000000 i 0.0 × 10−299

Let d denote the number of new function or derivative
evaluations per iteration. For our proposed method, d is found
to be 3. We remark from [10] that both the computational
efficiency EFF

EFF =
p

d
=

{
3
3 , if m = 1
2
3 ≈ 0.6667, if m ≥ 2,

and the efficiency index ∗EFF

∗EFF = p1/d =

{
3

1
3 ≈ 1.44225, if m = 1

2
1
3 ≈ 1.25992, if m ≥ 2,

display a good measure of computation compared to the
classical newton’s method with

EFF =
p

d
=

{
1, if m = 1
1
2
, if m ≥ 2,

and

∗EFF = p1/d =

{
2

1
2 ≈ 1.41421, if m = 1

1
1
2 = 1, if m ≥ 2.

Various numerical experiments prove the order of con-
vergence and the asymptotic error constant of the extended
leap-frogging Newton’s method. This proposed development
will play a important part in finding zeros of the nonlinear
equation with highly accuracy. The current investigation will
be extended to different methods at a multiple zero.
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