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Abstract—Let the vertices of a graph such that every two 

adjacent vertices have different color is a very common problem in 

the graph theory. This is known as proper coloring of graphs. The 

possible number of different proper colorings on a graph with a given 

number of colors can be represented by a function called the 

chromatic polynomial. Two graphs G and H are said to be 

chromatically equivalent, if they share the same chromatic 

polynomial. A Graph G is chromatically unique, if G is isomorphic to 

H for any graph H such that G is chromatically equivalent to H. The 

study of chromatically equivalent and chromatically unique problems 

is called chromaticity. This paper shows that a wheel W12 is 

chromatically unique.  
 

Keywords—Chromatic Polynomial, Chromatically Equivalent, 

Chromatically Unique, Wheel. 

I. INTRODUCTION 

graph G is planar if it can be drawn in the plane with no 

crossing edges. A λ-coloring of a graph G is a mapping f 

: V(G) → {1,2,3,…, λ} such that: f(u) ≠ f(v) for every edge uv ε 

E(G). A minimum number λ such that G has a proper coloring 

is called chromatic number, and G called λ-colorable. During 

their attempts to prove the four-color problem (Every planar 

graph is 4-colorable), Mathematicians found many useful tools 

for solving graph coloring problems. Birkhoff [1] proposed a 

way to attack the four-color problem by introducing a function 

P(M, λ), the number of ways of proper λ-colorings of a map 

M. P(M, λ) is a polynomial called chromatic polynomial of M. 

In 1968, Read [2] asked: What is a necessary and sufficient 

condition for two graphs to be chromatically equivalent; that 

is, to have the same chromatic polynomial? 

 Chao and Whitehead Jr. [3] defined a graph to be 

chromatically unique if no other graphs share its chromatic 

polynomial and another question appears: What is a necessary 

and sufficient condition for a graph to be chromatically 

unique?  

Chromaticity, mean study of the above two questions of 

chromatically equivalent and chromatically unique. 

During the period when the Four-Color Problem remained 

unsolved, which spanned more than a century, many 

approaches were introduced that would lead to a solution to 

this famous problem [4]. 

A wheel �� is a graph of order n, where n ≥ 4, obtained 

from cycle ���� by adding a new vertex w adjacent to each 

vertex of the cycle. Each edge incident with w is a spoke of 
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the wheel. 

Xu and Li [5] proved that ��, for odd n ≥ 5 is chromatically 

unique. They also showed that �� is not chromatically unique. 

Chao and Whitehead demonstrated that �� is not 

chromatically unique while Read [2] discovered that  ��	 is 

chromatically unique. Later on Li and Wgitehead Jr. [6] 

proved these results mathematically. This paper introduced 

mathematical proof of the chromatic uniqueness of ��
. 

II. AUXILIARY RESULTS  

In this section, some known results are introduced some 

known results that help in proving the main result.  

Theorem1. [7] Let G be a graph of order n and size m. Then 

��, �� is a polynomial of degree n. Moreover, if �, �� �
∑ �����	 ����  , then 

1- all coefficients �� are integers and alternate in sign; 

2- (i) �� � 0 

  (ii) �	 � 1 

  (iii) �� � �� 

  (iv)�
 � ��

 � � ���� 

  (v) �� � ���
� � � �� � 2����� � �
�� � 2���� 

Result (v) in the above theorem was obtained by Farrell [8] 

who also provided in [8] an expression for  
 

�! � ��
! � � ���



 �t��� � �#$�%�

 � � �� � 3��
�� � �2� � 9����� � �!�� �

6�)�� � ���� � 2�*�� � 3����      (1)                   

 

Theorem 2.Let G be a graph of order n and size m. Then 
 

��, �� � ∑ �∑ ��1�+,�-, .���/�+�	�/��       (2) 

 

where N(k, r) denote the number of spanning subgraphs of G 

having exactly k components and r edges [7]. 

Theorem 3. [7] Let G be a 0+-gluing of graph � and 
. 

Then 

 

          ��, �� � 1�%$,2�1�%3,2�
1�45,2�                                  (3) 

 

Theorem 4. [7] Let  and H be two chromatically equivalent 

graphs then we have: 

1. |V()|=|V(H)| 

2. |E()|=|E(H)| 

3. χ()= χ(H) 

4. ���� � ���6� 

5. �
�� � 2���� � �
�6� � 2���6� 

6. is connected if and only if H is connected 

7. is 2-connected if and only if H is 2-connected 

8. g()=g(H) 

9. and H have the same number of shortest cycles . 
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III. RESULTS 

This section is devoted to prove the chromatic uniqueness 

of W12.  

Theorem 5. The wheel ��
 is chromatically unique. 

Proof:  

 

���7
, �� � ��� � 1��� � 2��� � 3���! � 9 �� � 31�
 � 49� � 31���! � 

7�� � 19�
 � 23� � 11�        (4) 
 

Let  be a graph such that ��, λ�=��:7;, λ�. 

From Theorem 4 we have the following conditions: 

1.  has 12 vertices. 

2.  has 22 edges. 

3.  has 11 triangles. 

4. χ�� � 4 

5.  has no cut vertex since  is 2- connected by no.7 in 

Theorem 1. 

6. Since  is connected then  has no vertex of degree 0. 

7. has no a vertex of degree 1, if  has a vertex of degree 1 

then �� � 1�
 divide ��, λ� but this is not the case. 

8.  has no degree 2 vertex which is a triangle,if  has 

degree 2 then �� � 2�
 divide ��, λ� but this is not the 

case. 

9.  has no 0) subgraph since �� � 4� does not divide 

��, λ�. 

10. In [7], Farrell derived formulas for the coefficients of 

�1���=>�1�! in �6, ��, where H is a graph with p 

vertices. Specializing these formulas to ��, λ�=��?12, λ�. 

The coefficients of �1��is: 

 

���
� � � �� � 2����� � �
�� � 2����            (5) 

 

where, �: edges , � = 22 

 

���� � @�
3A 

���� � B12
3 C 

���� �  12!
3! 9! 

���� � 220 

B22
3 C � 1540 

 

Now, 

-(1540)+4400 ��
�� � 2���� 

 

Derive the d formula for the coefficient of �1�� 
 

�
�� � 2���� 
 

The coefficient of �1�! is: 

 

@�
4 A � B� � 2

2 C t��� � B����
2 C � �� � 3��
�� � �2� � 9����� � �!�� � 6�)��

� ���� � 2�*�� � 3���� 
 

where, 

�!�� : the number of pure pentagons �) . 

�)�� : the number of 0) subgraph. 

���� : the number of 2-3 complete bipartite graphs . 

�*�� : the number of 5-vertex wheels with one spoke 

deleted F! . 

���� : the number of wheel �) . 

 

B22
4 C � B22 � 2

2 C t��� � B����
2 C � �22 � 3��
�� � �2�22� � 9����� � �!��

� 6�)�� � ���� � 2�*�� � 3���� 
  

B22
4 C � 7315 

�)�� �  B12
5 C 

�)�� � 792 

 B20
2 C �  190 

�7315� � �190��220� � B220
2 C � �22 � 3��
�� � �2�22� � 9����� � �!��

� 6�792� � ���� � 2�*�� � 3���� 
 

Derive the d formula for the coefficient of �1�! 

 

� 19�
�� � 35���� � �!�� � ���� � 2�*�� � 3���� � 0 (6) 

 

11.  has no pure �) subgraph. 

It is assumed that  contains a pure �) subgraph which 

implying that  contains a pure �! subgraph and a 0! 

subgraph by (5). To consider various ways that the �) and 0! 

subgraphs can overlap see Fig. 1. 
 

 

Fig. 1 The different ways of W5 and K4 subgraphs are overlapping 

 

G�H, I� � I�I � 7��I � ;�;�I � J�;�I; � KI � L��I; � JI � J�; 
 

This is contradiction with equation (A) : 

�
�� � 2����and��, λ� not equal to ��?12, λ� . 

12. has no 0! subgraphs. 

According to (6) this condition is equivalent to the 

statement  has no �! subgraphs. 

Since  has no pure �) subgraph from (8) then ���� � 0 . 

 

�
�� � 2���� 

� 19�
�� � 35���� � �!�� � ���� � 2�*�� � 0  (7) 

 

Put (6) in (7): 

 

� 19�2����� � 35���� � �!�� � ���� � 2�*�� � 0 
� 38���� � 35���� � �!�� � ���� � 2�*�� � 0 

� 3���� � �!�� � ���� � 2�*�� � 0       (8) 

12 vertices 

22 edges 

11 triangles 

 

�) 

0! �! 
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0! be overlap with F!.We suppose that ���� � 1 and 

�*�� � 1 then : 

Case 1. ���� � 1, �*�� � 1 , �!�� � 0 and ���� � 1. The 

vertices are equal to 9 not 12, which is a contradiction. 

Case 2. ���� � 1, �*�� � 1 , �!�� � 1 and ���� � 2. The 

triangles are equal to 9 not 11, which is a contradiction. 

Case 3. ���� � 1, �*�� � 1 , �!�� � 2 and ���� � 3 

Case 4. The vertices must be greater than 12. Then the graph 

has no 0! . 

13.  has no separating edge(0
-gluing). It is assumed that  

consists of two subgraphs � and 
 which overlap in a 

separating edge and two cases are considered: 

Case 1. � and
 both contain odd cycles. 

Case 2. Only � or 
 contain odd cycles.  

Both cases shows contradiction. 

14. has no a pure �) subgraph. 

Since  has no pure �) subgraph from (8) then ���� � 0 . 

Since  has no 0! subgraph from (9) then ���� � 0 and  

has no �! subgraph from (9) then �
�� � 0 . 

Then: 

 

��!�� � ���� � 2�*�� � 0 
�!�� � ���� � 2�*��       (9) 

 

All possible cases leads to contradiction. 

15.  has no pure �� subgraph. 

Since  has no �), 0!, �! and �) subgraphs then it is 

supposed that  has triangles with ��. (see Fig. 2). 

 

 

Fig. 2 G has no pure C6 

 

However, this graph must contain a K4 subgraph. Therefore, 

G has no pure C5 subgraph. 

16. G has no pure �* subgraph. 

Since  has no �), 0!, �!, �) and �� subgraphs then it is 

supposed that  has triangles with �* see Fig. 3.  

 

 

Fig. 3 G has no pure C7 

 

But this graph must contain K4 subgraph. Therefore, G has 

no pure C7 subgraph. 

17. G has no a pure �� subgraph. 

Since  has no �), 0!, �!, �), �� and �* subgraphs then it 

is supposed that  has triangles with �� . See Fig. 4. 

 

 
Fig. 4 G has no pure C8 

 

This graph must contain a K4 subgraph. Therefore, G has no 

pure C8 subgraph. 

Since G is a 2-connected graph without separating edges 

and G satisfies the conditions then G is isomorphic to W12.  

IV. CONCLUSION 

It is not easy to prove the chromatic uniqueness of a certain 

graph. In this paper, it is concluded that the graph W12 is 

chromatically unique.  
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