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On CertainEstimates Of Rough
Oscillatory Singular Integrals
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Abstract—We obtain appropriate sharp estimates for rough oscilla-
tory integrals with polynomial phase. Our results represent significant
improvements as well as natural extensions of what was known
previously.
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I.INTRODUCTION AND MAIN RESULTS

HROUGHOUT this paper, let R", n > 2 be the
n-dimensional Euclidean space and S™~! be the unit
sphere in R"™ equipped with the normalized Lebesgue surface
measure do.
Let K be a kernel of Calderdn-Zygmund type on R" given
by
Ka(z) = Q(z/ |z|) 2| ™",

where ) is a function defined on S”~1, integrable over S"~!

and satisfies
Q(z)do () = 0. (€8
sn—l
Let P(n;m) denote the set of polynomials on R"
which have real coefficients and degrees not exceeding m,
and let H(n;m) denote the collection of polynomials in
P(n;m) which are homogeneous of degree m. For P (z) =
D pni<m @, we set [[P[| = ngm‘an|. Let n > 2,
m € N and o > 0. An integrable function Q on S™~! is
said to be in the space A(n;m;a) if

1 1+«
sup / |Q(y)] <log 7> do(y) < oo.
PeH(nm),||Pll=1Jsn—1 |P(y)]

(2)
For a > 0, let F_(S™71) denote the space of all integrable
functions © on S”~! which satisfy the condition

1920le, (se-1)

14+«
= [ ol (lee ) dat) < @)
cesn—1 Jgn—1 1€yl
We point out the space F_(S"!) (with o > 0) was intro-
duced by Grafakos and Stefanov in [7] with respect to their
studies of singular integrable operators. Also, it should be
noted that Grafakos and Stefanov in [7] showed that for any
a>0

Uzrus" ¢ F (8", 4
ﬂ FW(Sn—l) g Hl (Sn—l) g U FQ (Sn—l)7 (5)
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where H' (S™~!) denotes the Hardy space on S"~! in the
sense of Coifman and Weiss [6].

It was noted in [1] that A(n;1;a) = F_(S™" 1) and in the
case n = 2,

() A@2im;a) =F,(S"). (©6)
m=1

However, F_(S"™!) € A(n,m,a) forn > 3.
Consider the oscillatory singular integral I (P) given by

Io(P) = p.v./ eP@ Ko (x)de for P e P(n;d).  (7)

One of the main issues of concern regarding these oscilla-
tory singular integrals is obtaining sharp estimates for these
integrals with constants depending only the degree of the
polynomial P and also on a sharp size condition on (2. The
study of these problems was initiated by Stein-Wainger in [11],
Stein in [10], and recently continued by Parissis in [8] and
by Papadimtrakis-Parissis in [9].

In [10], Stein studied the singular integral Io(P) and
proved the following:

Theorem A. Assume that ) € L>°(S"~1) and satisfies (1).
Then for any P € P(n;d), there exists a positive constant cq
depending only on the degree d of the polynomial P and it is
independent of its coefficients such that

La(P)] < 4 |l sy - ®)

Recently, motivated by a result of Parissis in [8], Papadim-
trakis and Parissis in [9] improved Stein’s result by showing
that the constant ¢4 can be replaced by c(logd) for some
absolute constant ¢ and that the condition on {2 can be weaken
to be 2 € Llog L(S™1). Their result can be stated as follows.

Theorem B. Assume that Q2 € Llog L(S™™1) and satisfies
(1). Then there exists an absolute positive constant c such that

sup |IQ(P)|
PeP(n;d)

< clogd 4+ 1) (14 Q0 grsn) - O

Recently, Al-Qassem et al. in [3] were able to show that Theo-
rem C continues to hold if the condition 2 € Llog L(S"71) is
replaced by the weaker condition 2 € H!(S"~1). It is worth
mentioning that by Theorem A, one can easily show that if 2
is an odd function on S"~! and €2 merely in L'(S"~!), then

sup |Io(P)| < ¢(logd+1) |l u(sns) -
PcP(n;d)
In light of the estimates in (8)-(9) and the inclusion relations
in (4), the following question arises naturally:

Question. Does an estimate of the form (9) holds under the
condition Q € F_(S"1) for some a > 0.
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The main purpose of this paper is to have an answer to the
above question. The exact statements of our results are the
following:

Theorem 1.1. Let n > 2, d € N. Let Q) satisfy (1) and
Q€ N,,o1 Aln;m; ) for some oo > 0. Then there exists an
absolute positive constant ¢ which depends on §) such that

sup  |Io(P)| < c(logd+1) (1+C(Q)),  (10)
PeP(n;d)

where C(Q2) is a constant depends on Q.

Corollary 1.2. Let n = 2, d € N. Let Q) satisfy (1) and
Q e F_(SY) for some a > 0. Then there exists an absolute
positive constant ¢ such that

sup  |Io(P)| < C(logd + 1) (1 + 112l (Sl)) . an
PeP(n;d)
If P € P(n;d
result:
Theorem 1.2. Let n > 2, d = 1. Let Q) satisfy (1) and
Q € F, (S™™1). Then there exists an absolute positive constant
¢ which depends on () such that

) with d = 1, we have the following sharper

sup  |Io(P)| < c([|Qlg, (sn-1) + [Qllpign-1)). (12)
PeP(n;l)

Throughout the rest of the paper, we always use the letter C'
to denote a positive constant that may vary at each occurrence
but it is independent of the essential variables.

II. PROOF OF THEOREMS

Let first start with proving Theorem 1.2.

Proof of Theorem 1.2. Assume () satisfies (1) and Q €
F,(S"1). Let P € P(n;1). Without loss of generality, we
may assume P does not have a constant term. Thus P is a
polynomial given by P,(z) = a-z, where a = (ay,...,a,) €
R"™ and z = (21, ...,2,) € R™. By a change of variable we
have

Io(P) = p.v./ P Ko (x)da

— lim ’LP(Z)Q('/'E/ |ZIZD dx
520 Je<lel<R |z["
Rlal
= lim / / eiznt(a’) ) Q(x )dtda( ),
5—»0 gn—1 |’1‘

where o/ = a/ |a| with R™\{0}.

Since
R
/ (e_QWit(“ =) _ cos(27rt)) %

g

— logla -z " — igsgn(a' - x)

as R — oo and ¢ — 0, the integral is bounded, uniformly in
e and R, by C (1 + |logla’ - z||).

Thus, using (1) and Lebesgue’s dominated convergence
theorem, we get

Io(P)
= /SW1 Q(x) (log o’ - z|_1 _ igsgn(a' . x)) do(x).

Therefore,

o (P)| < c(|Qlg, sn-1) + 2L (gn-1y)

which completes the proof of Theorem 1.2.

Proof of Theorem 1.1. Assume that Q € (,,_; A(n;m; )
for some o > 0 and satisfies (1). Let
Ag=Aa(n) = sup | r(P),
0<e<R,
PeP(n;d)
where
Q
IE,R(P) _ / 1P(z) ('L/ |'I‘,D dx
e<|z|<R |1|
We need to show that
|4q(Q,n)] < C(logd +1)C(Q) (13)

for some absolute positive constant ¢ and for some constant
C(£2) depends only on Q. We shall first prove (13) for the
case d = 2™ for some integer m > 0 and then the general
case will be an immediate consequence.

Switching to polar coordinates we get

R
— / / eiP(tw)Q(l,) dt
Sn—1 Je

We may assume without loss of generality that P(tz) does

not have a constant term. Write P(tx) = Zle Py (z)t*,

where P; is a homogeneous function of degree s. Let m; =

HPjuLx(sn,l) and Q(tx) = Zd/2 P, (x)t*. Since € and R are

arbitrary positive numbers and P is a polynomial of degree d,

by a dilation in ¢ we may assume, without loss of generality,
d

that maxd ;g Mj = 1. Also, there is § < jo < d so that

mj, = 1. Now, IaR(P) can be written as

|[5 R

iP(t) dt
+ P Q)
sn-1J1

= L1+ 1. (14)

dﬂ( )

Let us first estimate I; as follows:

I
Y Pes) Ot dt
< / / etPt2) _ i QU0 1O (2)| —do ()
gn-1 t
/ / zQ(tm)Q dO’( )
Sn 1
m;
< L Ly (gn-1) + Aggo-
d<]§d
Therefore we have
I < 9] gy + Aage. (15)

Now we estimate

R
/ / eiP(th(z‘)ﬂda(a?) .

I, =
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For each fixed R > 1 we have a unique ky € Z such that
2ko—1 < R < 2k Hence

2" dt
< sup / / P90 (2) L do(2)
ko€Zy |Jsn—1 Joko—1 t
dt
+ sup / / PO () — da( )
k0€Z+ e k 1 Sn—1 ok—1
= Ji+ Jo. (16)

Now we need the following lemma from [2].
Lemma. Let h(t) = bg+byt+- - - +bgt? be a real polynomial
of degree at most d, and let 1) € C![a, b]. Then for any jo with
1 < jo < d, there exists a positive constant C' independent of
a, b, the coefficients of by, ...,bq and also independent of d

such that
b
/eih(t)w(t)dt
b
< Ol sup () + / (1) dt
a<t<b

a

holds for 0 < a <b<1.

It is easy to see that
Ji<c ||Q||L1(Sn,1) . an

By the above lemma we get

1 i P(2F dt ke _1
/ et “”)?‘ < C 298P (z)| 7.
2-1

By combining the last estimate with the trivial estimate

1
/ eiP (2 ta) dt
9-1 13

1
/ piP (2" tx) dt
9-1 13

a+1
iy —(at1) 1
< C (log27* <d—|—a+log 7) .
(log2") B, @)
By the last inequality and since

(a+b)? <271 (a® +b%) (for > 1 and a,b > 0)

we get
1
; dt
/ ezP(2ktz) 7‘

1 a+1
C (jok) " (d + o)™ (log E <m>|)

1 a+1
U (10g P, <x>|> '

Therefore, by a change of variable, (18) and since Pj;, €
H(n;m) with ||P;, || =1, we get

Z k<a+1>> :

k=ko+1

<log?2,

we obtain

N

IN

(18)

Jo < C sup
ko€Zy

which in turn implies

Jo < C. (19)
By (16)—(17) and (19) we obtain
L <C. (20)
Thus by) (14), (15) and (20) we get
Ag < C+ Ay
Since d = 2™, we get
Agm < C' + Agm—1
and hence by induction on m we have
Agm < Cm + A;. (21)

Now, we need to estimate A;. To this end, we notice that any
P € P(n;1) with a non constant term will be of the form
P(z) = a.x for some a € R™. By the calculations as in the
proof of Theorem 1.2 and a change of variable we get

|I5,R(P)|

/ Q(x) (log |a’ -gz:|71 — izsgn(a' . 1:)) do(z)|,
- 2

where o/ = a/ |a|. Hence,

/ Q(z)log la’ - 2|~ do(x)|.
Sn—1

Since Q € (,,_; A(n;m;a) we obtain Q € A(n;1;a) =
F_(S™~!) which easily implies that

<

[Ie.r(P)| < C+ (22

[e,r(P)| < C,
and hence we have
A <C. (23)
Hence, by (19) and (22) we obtain
Agm < C(m+1). (24)

The case now for the general d is easy. Choose a positive
integer m so that 2™~! < d < 2™. By definition of A4 and
since P(n;d) C P(n;2™) we have

Ad S AQm S C(m + ].) S C(logd+ 1),

which completes the proof of Theorem 1.1.
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