
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:2, 2007

137

On Bounds For The Zeros of Univariate
Polynomials

Matthias Dehmer1 and Jürgen Kilian2

Abstract—Problems on algebraical polynomials appear in many
fieldsof mathematics and computer science. Especially the task of de-
termining the roots of polynomials has been frequently investigated.
Nonetheless, the task of locating the zeros of complex polynomials
is still challenging. In this paper we deal with the location of zeros
of univariate complex polynomials. We prove some novel upper
bounds for the moduli of the zeros of complex polynomials. That
means, we provide disks in the complex plane where all zeros
of a complex polynomial are situated. Such bounds are extremely
useful for obtaining a priori assertations regarding the location of
zeros of polynomials. Based on the proven bounds and a test set
of polynomials, we present an experimental study to examine which
bound is optimal.
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I . INTRODUCTION

In mathematics and computer science, polynomials are ex-
tremely important objectsof investigation and therearevarious
applications in many scientific specialization areas, such as
coding theory, cryptography, combinatorics, number theory,
mathematical biology and engineering [2], [4], [11], [16].
Especially, the polynomial zeros play an important role, e.g.,
to solve digital audio signal processing problems [25], control
engineering problems [3], and eigenvalue problems in mathe-
matical physics [23]. Historically, the topic of determining the
roots of algebraical equations like

anzn + an−1z
n−1 + · · · + a0 = 0,

has been frequently investigated in pure algebra [8], [20].
Then, in the 20-th century, the investigation of polynomial ze-
ros (or rootsof polynomial equations) becameapart of applied
function theory [22], where the polynomials are considered as
holomorphic functions [22]. This specialization area is called
the analytic theory of polynomials [8], [9], [21] or geometry
of polynomials [8], [13], [15]. The main area of investigation
within the geometry of polynomials is to examine geometric
relationships between the zeros and the coefficients of a
given polynomial. Thegeometry of polynomialspossesses still
challenging and outstanding problems, e.g. SCHÖNBERG’s,
KATSOPRINAKIS and SENDOV ’s conjecture [18], [19]. For
example, the conjecture of SENDOV [19] deals with the zeros
of a polynomial and its derivative: if all zeros of a complex
polynomial f(z) lie in the unit circle, then there is always a
zero of f ′(z) in |z − a| = 1, where a is any zero of f(z).
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Up to now, this conjecture is only solved for certain classes
of polynomials [5], [6]. A further important problem of the
geometry of polynomials is examining lower or upper bounds
for the moduli of the zeros of complex polynomials. In other
words, one is mainly interested in finding closed or open disks
in the complex plane, which contain either all or p < n zeros
of a complex polynomial, e.g., [1], [8], [13], [14], [24]. For
example, such bounds are very useful for solving practical
problems in numerical analysis, e.g. eigenvalue problems
[23], because it is well known that the zeros of a complex
polynomial f(z) := anzn + an−1z

n−1 + · · ·+ a0, ai ∈ C can
not be computed based on closed terms, if n ≥ 5. Altogether
that means we get a priori assertions which provide regions in
the complex plane where the zeros of a given polynomial lie.
In terms of eigenvalue problems, such bounds are very useful
because one is often not interested in computing all eigenval-
ues precisely. In this paper we throughout deal with complex
polynomials, that means the polynomials under consideration
have complex valued coefficients. In contrast to this, a deep
treatment of methods for examining the zeros of real valued
polynomials can be found in [17].

This paper is organized as follows: In Section II we briefly
state mathematical preliminaries for examining the zeros of
complex polynomials. Section III providesnovel upper bounds
for the moduli of the zeros of complex polynomials. In order
to examine the problem of evaluating the quality of given zero
bounds, we perform an experiment in Section IV, based on a
set of complex polynomialswith randomly chosen coefficients.
Section V finishes the paper with a summary and conclusion.

I I . MATHEMATICAL PRELIMINARIES

In the following, we state some definitions and assertions for
examining the zeros of complex valued polynomials. First, we
express the definition of the space of algebraical polynomials
with complex coefficients.

Definition 2.1: Let n be a natural number. Then,

Πn := {f : C −→ C |f(z) =
n∑

i=0

aiz
i, ai ∈ C,

i = 0, 1, . . . , n},

denotes the space of complex valued polynomials with
deg(f(z)) ≤ n.

Definition 2.2: Let z0 ∈ C and r ∈ IR+. Then

K(z0, r) := {z ∈ C | |z − z0| ≤ r}

is called closed disk with central point z0 and radius r.
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Fig. 1. Closed disk in the complex plane in which all zeros of a certain
complex polynomial f ∈ Π6 are situated.

A well known result in algebra is a famous result due to
GAUSS [10] that is called the fundamental theorem of algebra,
e.g., [8], [10]. Historically, it was the first important result in
the specialization area of examining the rootsof an algebraical
equation.

Theorem 2.1: Let

f(z) =
n∑

i=0

aiz
i , an 6= 0 , ai ∈ C , i = 0, 1, . . . , n (1)

be a complex polynomial with deg(f(z)) = n. Then, f(z) has
exactly n zeros.
The fundamental theorem of algebra states that a complex
polynomial with degree n has exactly n zeros, but we do
not know their location in the complex plane. For locating
the zeros of complex valued polynomials, we will provide in
Section III circular regions in the complex plane, where the
regionsare manifested by the novel bounds. We now state fur-
thermoreawell known result about thezero distribution of real
valued polynomialswhich is originally due to DESCARTES. In
literature, this result is often called the DESCARTES’ Rule of
Signs [8], [12], [13].

Theorem 2.2: Let

f(z) =
n∑

i=0

aiz
i , ai ∈ IR , i = 0, 1, . . . , n

be a real valued polynomial. The number of the positive
zeros of f(z) is equal to the number of sign changes of the
coefficient sequence of f(z), minus a multiple of two.

Based on these preliminaries, we introduce in Section III
the problem of finding circular regions in the complex plane
which contain all zeros of a complex valued polynomial.

I I I . NOVEL ZERO BOUNDS

In this section we first introduce the problem of locating the
zeros of a complex polynomial in the complex plane. More
precisely, we are searching for closed disks

K(z0, r) := {z ∈ C | |z − z0| ≤ r}, z0 ∈ C, r ∈ IR+,

which contain all zeros of a complex valued polynomial. In
the following, we assume a complex polynomial f(z). Now,

we want to find a bound S = S(a0, a1, . . . , an) in such a way
that all zeros of f(z) lie in the closed disk

K(z0,S(a0, a1, . . . , an)) :=
{z ∈ C | |z − z0| ≤ S(a0, a1, . . . , an)}.

Without loss of generality we set z0 = 0. That means we are
always searching for circular regions with central point zero
and radius S. For example, Figure 1 shows a circular region
with central point zero and radius r in which all zeros of a
complex valued polynomial f ∈ Π6 aresituated. In Figure1, f
has two positive zeros and furthermore there is a zero zi with
zi = r. That means the underlying zero bound is sharp. In
the following, we will mainly prove some novel zero bounds
for the moduli of the zeros of complex valued polynomials.
Furthermore we prove two theorems which provide families
of zero bounds in a sense that the bounds also depend on a
certain parameter p ∈ IN. This leads us to generalizations in
such a way that known bounds follow as special cases.

A. Implicit Zero Bounds

We begin with proving novel implicit zero bounds for complex
valued polynomials. We call a zero bound implicit if the zero
bound is also a zero of a concomitant polynomial obtained
from the underlying proof.

Theorem 3.1: Let f(z) be a complex polynomial (see
Equation 1). All zeros of f(z) lie in the closed disk
K(0, max(1, δ)), where δ 6= 1 denotes the positive root of
the equation

zn+2 − zn+1 − ∆zn + ∆ = 0,

and

∆ := max
1≤j≤n

∣∣∣∣an−1an−j − anan−j−1

an
2

∣∣∣∣, a−1 := 0.

Proof: Consider the complex polynomial

Q(z) := (an−1 − anz)f(z).

We obtain

Q(z) = −an
2zn+1 + (an−1an−1 − anan−2)zn−1 + · · ·

+ (an−1a1 − ana0)z + an−1a0.

Applying (two times) the well known triangle inequality leads
us to the inequality

|Q(z)| = |an|
2|z|n+1 −{|an−1an−1 − anan−2||z|

n−1 + · · ·

+ |an−1a1 − ana0||z| + |an−1a0|}.
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Furthermore, we conclude

|Q(z)| = |an|
2

[
|z|n+1 −

{∣∣∣∣an−1an−1 − anan−2

an
2

∣∣∣∣ |z|n−1

+ · · · +
∣∣∣∣an−1a1 − ana0

an
2

∣∣∣∣ |z| +
∣∣∣∣an−1a0

an
2

∣∣∣∣
}]

,

≥ |an|
2

[
|z|n+1 − ∆

n−1∑
j=0

|z|j

]
,

= |an|
2

[
|z|n+1 − ∆

|z|n − 1
|z| − 1

]
,

=
|an|2

|z| − 1

[
|z|n+2 − |z|n+1 − ∆|z|n + ∆

]
,

where

∆ := max
1≤j≤n

∣∣∣∣an−1an−j − anan−j−1

an
2

∣∣∣∣, a−1 := 0.

We define H(z) := zn+2 − zn+1 − ∆zn + ∆. Because H(z)
is a real valued polynomial, we can apply Theorem 2.2. The
application of Theorem 2.2 leads us to the fact that H(z) has
either two or no positive zeros. Now, we see that H(1) = 0.
From this, it follows that H(z) has exactly two positive zeros.
In the following, we denote the second positive root as δ.
Based on the following observations

sign{H(0)} = 1 and sign{H(+∞)} = 1,

we finally conclude

|Q(z)| > 0 for |z| > max(1, δ).

Hence, all zeros of Q(z) lie in K(0, max(1, δ)). Because of
the fact that all zeros of f(z) are zeros of Q(z), the assertion
of the theorem holds also for f(z).

The next theorems also provide implicit zero bounds for all
zerosof complex valued polynomials. Especially the following
theorem is similarly to prove as Theorem 3.1.

Theorem 3.2: Let f(z) be a complex polynomial (see
Equation 1). Then, all zeros of f(z) lie in the closed disk
K(0, max(1, δ)), where δ 6= 1 denotes the positive root of the
equation

|an|
2zn+2 − |an|

2zn+1 − Φzn + zn−1(Φ − ∆̃|an|
2)

+ ∆̃|an|
2 = 0,

where

∆̃ := max
2≤j≤n

∣∣∣∣an−1an−j − anan−j−1

an
2

∣∣∣∣, a−1 := 0,

and Φ := |a2
n−1 − anan−2|.

Theorem 3.3: Let f(z) beacomplex polynomial (seeEqua-
tion 1). Then all zeros of f(z) lie in the closed disk K(0, δ),
where Φ− ∆̃|an|2 > 0 and δ > 1 denotes the largest positive
root of the equation

|an|
2z3 − |an|

2z2 − Φz + (Φ − ∆̃|an|
2) = 0. (2)

In the case that Φ− ∆̃|an|2 < 0, then all zeros of f(z) lie in
the closed disk K(0, δ), where δ > 1 is the unique positive
root of Equation 2.

Proof: Starting again from the complex polynomial

Q(z) := (an−1 − anz)f(z),

we infer

|Q(z)| = |an|
2

[
|z|n+1 −

∣∣∣∣an−1an−1 − anan−2

an
2

∣∣∣∣ |z|n−1

−

[ ∣∣∣∣an−1an−2 − anan−3

an
2

∣∣∣∣ |z|n−2

+ · · · +
∣∣∣∣an−1a0

an
2

∣∣∣∣
]]

,

= |an|
2

[
|z|n+1 −

∣∣∣∣an−1an−1 − anan−2

an
2

∣∣∣∣ |z|n−1

− ∆̃
|z|n−1 − 1
|z| − 1

]
.

If we now assume |z| > 1 and by setting

Φ := |a2
n−1 − anan−2|,

we further obtain

|Q(z)| > |an|
2

[
|z|n+1 −

Φ
|an|2

|z|n−1 − ∆̃
|z|n−1

|z| − 1

]

=
1

|z| − 1

[
|an|

2|z|n+2 − |an|
2|z|n+1

− Φ|z|n + |z|n−1(Φ − ∆|an|
2)

]
,

=
|z|n−1

|z| − 1

[
|an|

2|z|3 − |an|
2|z|2 − Φ|z|

+ (Φ − ∆|an|
2)

]
.

We now define

H(z) := |an|
2|z|3 − |an|

2|z|2 − Φ|z| + (Φ − ∆|an|
2),

and assume that Φ − ∆|an|2 > 0. Then, from the definition
of H(z) it follows that H(z) has exactly two sign changes in
his coefficient sequence. Further, we observe that

H(1) = −∆|an|
2 < 0, H(0) = Φ − ∆|an|

2 > 0,

and
lim

z→+∞

H(z) = +∞.

Hence, we conclude that H(z) possesses exactly two positive
zeros. We denote the largest one as δ. From the equations
above we finally get δ > 1. Hence, we have proved that all
zerosof Q(z) lie in the closed disk K(0, δ) and δ is the largest
positive root of Equation 2. Due to the fact that all zeros of
f(z) are zeros of Q(z), the first assertion of the theorem holds
also for f(z).
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Now, weassumethat Φ−∆|an|
2 < 0. Then, weobservethat

H(z) has exactly one sign change in his coefficient sequence.
Applying Theorem 2.2 again, we conclude that H(z) has a
unique positive zero δ. Further, it holds

H(1) = −∆|an|
2 < 0 and H(0) = Φ − ∆|an|

2 < 0.

Finally, it follows that δ > 1. Hence, the second assertion of
the theorem holds for the zeros of Q(z) and finally also for
the zeros of f(z). This finalizes the proof.
The next theorem is more general in a sense that it provides
a family of zero bounds for all zeros of a given complex
polynomial.

Theorem 3.4: Let f(z) beacomplex polynomial (seeEqua-
tion 1) and IN ∋ p ≥ 1. We further define

Λ := max
0≤j≤n+p−1

Mj

|an|
.

Then all zeros of f(z) lie in the closed disk
K(0, max(1, δ)), where δ 6= 1 denotes the positive root
of the equation

zn+p+1 − zn+p(Λ + 1) + Λ = 0. (3)

Proof:
We define the complex polynomial

P (z) := (1 − z)pf(z) =
p∑

j=0

(
p

j

)
(−1)jzjf(z).

By simple algebraical rearrangements, we obtain

P (z) =
(

p

p

)
(−1)panzn+p

+zn+p−1

[(
p

p

)
(−1)pan−1 +

(
p

p − 1

)
(−1)p−1an

]

+zn+p−2

[(
p

p

)
(−1)pan−2 +

(
p

p − 1

)
(−1)p−1an−1

+
(

p

p − 2

)
(−1)p−2an

]
+ · · ·

+zn

[(
p

p

)
(−1)pan−p +

(
p

p − 1

)
(−1)p−1an−p+1

+ · · · +
(

p

0

)
(−1)0an

]
+ · · ·

+z

[(
p

1

)
(−1)1a0 +

(
p

0

)
(−1)0a1

]
+
(

p

0

)
(−1)0a0.

Based on the definition (p ≤ n and j ≤ p)

Mn+p−j :=
j∑

i=0

an−j+i

(
p

p − i

)
(−1)p−i,

we get for the modulus of P (z)

|P (z)| ≥ |an||z|
n+p − {Mn+p−1|z|

n+p−1

+ · · · + M1|z| + M0},

≥ |an|

[
|z|n+p − Λ

(
|z|n+p − 1
|z| − 1

)]
,

=
|an|

|z| − 1

[
|z|n+p+1 − |z|n+p(Λ + 1) + Λ

]
,

where Λ = max
(

M0

|an|
, M1

|an|
, . . . ,

Mn+p−1

|an|

)
. If we now define

H(z) := |z|n+p+1−|z|n+p(Λ+1)+Λ , we see that H(1) = 0.
By using Theorem 2.2, we concludethat H(z) hasexactly two
positive zeros. It further holds

lim
z→+∞

H(z) = +∞.

Just as in Theorem 3.1 we finally infer that all zeros of P (z)
lie in K(0, max(1, δ)). But once again, all zeros of f(z) are
zeros of P (z) and hence the theorem is completely proved.

Now, we see immediately that a special choice of p leads
us to special bounds. As a corollary, we get

Corollary 3.5: If we set p = 0 in Equation 3, we obtain a
known bound which has been originally proven by DEHMER

[7].

B. Explicit Zero Bounds

In order to finalize our theoretical Section III, we state a
theorem that is similar to prove as Theorem 3.4. Thereby,
Theorem 3.6 is a explicit zero bound. We call a zero bound
explicit if the bound can be directly computed based on the
polynomial coefficients.

Theorem 3.6: Let f(z) beacomplex polynomial (seeEqua-
tion 1) and IN ∋ p ≥ 1. Just as in Theorem 3.4, we define

Λ := max
0≤j≤n+p−1

Mj

|an|
.

All zeros of f(z) lie in the closed disk

K(0, 1 + Λ). (4)

As a direct consequence of Theorem 3.6, we find
Corollary 3.7: If we set p = 0 in the Closed Disk 4, we

obtain a classical result of CAUCHY [8], [13].

IV. EXPERIMENTAL RESULTS

In this section we briefly describe our experiment for compar-
ing thezero bounds. We performed our experimentsbased on a
set Sf of 1000 complex valued polynomialswith deg(f(z)) =
19 (∀ f(z) ∈ Sf ). The coefficients were randomly chosen
in such a way that their absolute values follow an uniform
distribution and for all polynomials it holds the relation
0 ≤ |ai| ≤ 30, i = 0, 1, . . . ,deg(f(z)). We want to mention
that the main goal of this experimental study was to determine
which bounds gives us optimal values, based on the chosen
set Sf . In order to achieve this, we computed the ratios of
the corresponding zero bounds. For example, Figure 2 depicts
the bound ratios of Theorem 3.2 and Theorem 3.4. We see
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Fig. 2. The x-axis shows the polynomial index, sorted by ascending y-axis values. The y-axis shows the ratios of the bounds of Theorem 3.2 and
Theorem 3.4. Further it holds that the minimum value of the ratio of the computed bounds is in this case min3.2/3.4

.
= 0.1277. For the maximum value, it

holds max3.2/3.4
.
= 0.5527. The symbol

.
= denotes truncated float numbers.

Bound ratio m̄ (Th. i/Th.j) σ

3.2/3.1 0.9270 0.0524
3.2/3.3 0.9999 1.1719 · 10−5

3.2/3.4 (p = 2) 0.3849 0.0676
3.2/3.6 (p = 2) 0.3849 0.0676
3.4/3.6 (p = 2) 0.9999 2.1522 · 10−12

Fig. 3. Experimental comparison of zero bounds based on the set Sf .
m̄ (Th. i/Th. j) denotes the mean of all ratios of the bounds of Theorem i

and Theorem j. The symbol σ denotes the associated standard deviation.

that the distribution of ratios follows approximately a normal
distribution. Asshown in Figure4, this is not the case between
the bound ratios of Theorem 3.2 and Theorem 3.1. Table 3
shows the mean and standard deviation of the comparison of
thenovel zero boundspresented asdescribed above. Asa main
significant characteristic for comparing the novel zero bounds,
we chose the ratios of the zero bounds (of the corresponding
theorems). The observed numbersand the calculated statistical
values show that the bounds of Theorem 3.2 are optimal
in the very most cases. The main reason for this is related
with the number of terms in the concomitant polynomial of
Theorem 3.2 and the constant ∆̃. Generally, in case if the
leading coefficient of a given polynomial is very large, then

∆̃ is mostly smaller than M := max
0≤j≤n−1

∣∣∣∣ aj

an

∣∣∣∣, where M

often appears in classical results, see [13], [8]. For example,
in terms of the bound ratio of Theorem 3.2 and Theorem 3.1
(see Figure 4) we observe that the mean value is close to 1
and the corresponding σ is relative small. Further, that means
that based on the observed mean the chance is very small
(correlates with σ) for finding samples such that the bound
of Theorem 3.1 is better than the bound of Theorem 3.2.
We further conclude that the bounds of Theorem 3.4 and
Theorem 3.6 give us the worst bounds. Another observation
from Table 3 is that the bound values of Theorem 3.4 and
Theorem 3.6 are almost equal. This is mainly indicated by the
corresponding mean and standard deviation value. In order to

show this mathematically, we take a closer look at Equation 3
and assume that δ 6= 1 is a positive root of Equation 3.
Generally, we get

δn+p+1 − δn+p(Λ + 1) + Λ = 0,

and

δ +
Λ

δn+p
= Λ + 1.

From the last equation it follows immediately that if n + p is
sufficiently large, then we infer δ ≈ Λ+1. But Λ+1 is exactly
the direct bound of Theorem 3.6. The observation described
above holds for all p ∈ IN. In terms of the bound ratio of
Theorem 3.2 and Theorem 3.3, we can argue in a similar way.

V. CONCLUSION

In this work we presented somenovel zero boundsfor locating
the zeros of complex valued polynomials. We showed that
there are basically two types of zero bounds: implicit and
explicit zero bounds. Here, we called a zero bound implicit
if the zero bound is also a zero of a concomitant polyno-
mial obtained from the underlying proof. A zero bound is
called explicit if the bound can directly be determined from
the polynomial coefficients. Most of our proven results are
implicit bounds. As a special theoretical result we noticed
that Theorem 3.4 and Theorem 3.6 provide families of bounds
(generalizations), depending on the parameter p ∈ IN. If
we set p = 0, we obtain an already known [7] and also a
classical result of CAUCHY [8], [13]. The main result of the
experimental section is that based on the chosen set Sf , we
found that the bound of Theorem 3.2 is optimal, compared to
the remaining ones. Starting from the algebraical definitions
of zero bounds, we generally do not see (a priory) which
bound is the best one (without numerically computing the
bound values). We concludethat it is difficult to obtain general
assertions for describing the quality of zero bounds. In fact,
the process of deriving quality assertations of zero bounds
must be associated with a certain set of polynomials. Finally,
we want to emphasize that for our experiments we used
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Fig. 4. The axis designation is equal as in Figure (2). This picture shows the ratios of the bounds of Theorem 3.2 and Theorem 3.1. Further it holds
min3.2/3.1

.
= 0.6664 and max3.2/3.1

.
= 1.000.

polynomialswith a certain degreeand acertain value rangefor
the moduli of the coefficients. Thus our experimental results
can yet not be generalized for arbitrary cases. As future work,
we therefore like to analyze the dependencies between the
observer statistical numbers (m̄, σ) and the parameters of the
evaluated polynomials (deg(f(z)), value range for the moduli
of the coefficients) in more detail. We are also interested in
analyzing the distribution type of the ratios between the dif-
ferent bounds in depth. Here, we want to find the reason why,
for example, the ratio between Theorem 3.2 and Theorem 3.6
follows a normal distribution while the ratio of Theorem 3.2
and Theorem 3.1 follows a different distribution.
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