
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:4, 2018

245

Off-Policy Q-learning Technique for Intrusion
Response in Network Security

Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract—With the increasing dependency on our computer
devices, we face the necessity of adequate, efficient and effective
mechanisms, for protecting our network. There are two main
problems that Intrusion Detection Systems (IDS) attempt to solve.
1) To detect the attack, by analyzing the incoming traffic and inspect
the network (intrusion detection). 2) To produce a prompt response
when the attack occurs (intrusion prevention). It is critical creating an
Intrusion detection model that will detect a breach in the system on
time and also challenging making it provide an automatic and with
an acceptable delay response at every single stage of the monitoring
process. We cannot afford to adopt security measures with a high
exploiting computational power, and we are not able to accept a
mechanism that will react with a delay. In this paper, we will
propose an intrusion response mechanism that is based on artificial
intelligence, and more precisely, reinforcement learning techniques
(RLT). The RLT will help us to create a decision agent, who will
control the process of interacting with the undetermined environment.
The goal is to find an optimal policy, which will represent the
intrusion response, therefore, to solve the Reinforcement learning
problem, using a Q-learning approach. Our agent will produce an
optimal immediate response, in the process of evaluating the network
traffic.This Q-learning approach will establish the balance between
exploration and exploitation and provide a unique, self-learning and
strategic artificial intelligence response mechanism for IDS.

Keywords—Intrusion prevention, network security, optimal policy,
Q-learning.

I. INTRODUCTION

NOWADAYS, the significant development of our computer

systems transformed our daily life entirely, and made

our existence reliant on them. According to Cisco Visual

Networking Index 2017 [16], there are expected 3.5 computer

devices per capita worldwide in 2021 and almost 106

Terabytes per second of global Internet traffic. With the rapid

progress of the Internet, our computer structures are exposed

to an increased number of threats. Although the research and

technological innovations in Cyber security are progressing

rapidly, it is nearly impossible to have a completely secure

system. The IDS observe the network traffic, analyze it and

identifies possible anomalies or unauthorized access to the

network behavior. Some of the IDS also respond to the

intrusion, which is a necessary measure in protecting our

computer network. There are several limitations and problems

of the existing methods that we will address in this paper

and attempt to solve with the proposed off-policy Q-learning

intrusion response model. On the one hand, exploitation and

Z. S. Stefanova is with the Department of Mathematics and
Statistics, University of South Florida, Tampa, Fl 33620 USA (e-mail:
stefanova@mail.usf.edu).

K. M. Ramachandran is with the Department of Mathematics and Statistics,
University of South Florida, Tampa, Fl 33620 USA (e-mail: ram@usf.edu).

misuse of resources happen, because the IDS is designed to

observe the network all of the time; consequently, resources

are utilized even if there is no attack occurring. On the other

hand, although the flowing traffic is examined continuously,

once the attack is detected, there is a significant amount of

time needed for the IDS to respond. The network traffic often

travels a certain distance in the form of packets; moreover,

the intruder can alternate or even terminate it before reaching

the IDS. Another problem is related to the reliability of the

protecting system or to what extent we can trust the IDS.

The administrators should regularly update their protection

mechanisms; otherwise, once the intruder recognizes specific

weaknesses and limitations, he will send even more attacks,

therefore challenging the detection system.

II. RELATED WORK

Many of the IDS research publications can be summarized

as machine learning classification problems, which are solved

with supervised or semi-supervised learning models [15].

Although some authors attempted to implement unsupervised

learning, they achieved low accuracy [12]. RL has been

widely employed in computer network disciplines for research

purposes, however, the utilization in the intrusion detection or

intrusion preventions area has not been substantially explored.

Scientists perceive considerably intriguing the domain of

routing protocols, validation processes, admission control and

quality of service mechanisms. This attentiveness may be due

to the fact that RL is reasonable for control situations, where

a response from the environment exists. In all the occurrences

mentioned above, we detect feedback, which is represented as

a reward. Xu et al. [17] implemented reinforcement learning in

an association with Hidden Markov Models (HMM) to identify

breaches by learning the state transition probabilities. The

authors claimed that HMM could offer a suitable estimation of

the state transitions on IDS. A linear function approximation

and a temporal difference algorithm were applied to update

the value function. The results that they obtained, using the

same training and testing sets, were superlative compared to

other machine learning methods. Two years later, Xu and Luo

[18] modeled the network behavior with a temporal-difference

approach. In this work, they achieved even higher detection

accuracy, compared to a prior implementation using HMM

methods. To approximate the value function and to perform

feature selection, they used a sparse kernel least-squares

temporal-difference algorithm (LS-TD) [19]. Xu and Luo

provided empirical results on host-based intrusion detection to

prove the quality of the proposed method; they used system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:4, 2018

246

calls traces from the send mail application. As illustrated

by the researchers, the kernel-based LS-TD algorithm is a

non-linear function that estimates a high-dimensional feature

space. Miller and Inoue [13] used a model called Perceptual

Intrusion Detection System with Reinforcement (SPIDeR)

which consists of heterogeneous agents. A single agent can

employ a self-organizing map to detect malicious activities,

and there is a blackboard mechanism for the aggregation of

results generated from all agents. Once a signal is detected

within the system, it is distributed to all agents for a collective

group analysis. They send votes to the central blackboard

system, which computes weights, and it rewards the agents

depending on their performance. Cannady, in two of his

works [5] and [6], applied neural networks approach to

obtain a feasible solution. However, this methodology was

incapable of adapting to streaming data. The data were

necessary to be taken off-line and retrained with a new

set of representative data. Cannady applied a Cerebellar

Model Articulation Controller Neural Network, to resolve this

problem, which has the ability for an online-learning. He

suggested a three-layer feed-forward mechanism, intended to

generate a series of input-output mappings. In this research,

the single IDS-agent learns how to detect flood-based Denial

of Service attack based on Internet Control Message Protocol

(ICMP) and user datagram protocol (UDP). The system

initially learns how to identify ICMP breaches and using

prior experience and reoccurring training it learns how to

recognize new attacks based on the UDP protocol. One

approach employed to find intrusions on host-based IDS is

based on analyzing sequences of system calls. The states are

defined by a short sequence of system calls in a single trace.

III. NETWORK ENVIRONMENT REPRESENTED AS

REINFORCEMENT LEARNING PROCESS

A. Reinforcement Learning

Let us assume that there is one decision maker in the

IDS and he regularly interacts with his environment. Based

on the actions that he undertakes, he can modify his states

and subsequently his performance is evaluated by feedback

(reward). The aim is to select a set of actions which will

optimize his long-term reward.

Fig. 1 Reinforcement Learning Process

To understand how RL operates, we need to introduce the

principle of Markov property and to familiarize ourselves

with the concept of a Markov Decision Process (MDP). Let

us define S as a countable set of states or the state space

S : {S1, . . . St}, where St = st is a random variable with a

range of St ∈ (0, ..t], this set will be Markov if and only if:

P (St+1 = st+1|St = st) = P (St+1 = st+1|St = st..., S0 = s0)

Thus, the current state captures all information from the

history, and once the current state is known, it may be

considered as a sufficient statistic to decide for the future.

The MDP is characterized by the tuple 〈S,A,R, T, γ〉, where:

– S is a countable set of states S : {S0, S1, . . . St} in terms

of the network set of states as S : {sN , sA}. Where sA is

the state of being under attack and sN is the state when

the network is normal. The number of states will depend

on the number of attacks that we are experiencing, or

whether the network is normal or under attack;

– A is a set of actions, called the action space A :
{A1, A2, . . . An}, where An = an and An ∈ (0, n]
or in our case we have A : {ap, adn}, where ap is the

action when the agent protects the network and adn is

the action when the agent ” do nothing” or doesn’t protect

the network.

– R defines the immediate reward that the agent can receive

at each state, it is described as the reward for taking

action An at state St , therefore f : S ×A → R

Ra
s = E[Rt+1|St = st, An = an]

– T is a state transition probability matrix. It specifies the

probability of transition from state i to state j, on taking

action An = a, where i ∈ (0, t] and j ∈ (0, t+ 1]

T a
ij = P [St+1 = sj |St = si, An = an]

Tij
a =

⎛
⎜⎜⎝

T a
11 · · · T a

1t

...
. . .

...

T a
t1 · · · T a

tt

⎞
⎟⎟⎠, where the number of

transition matrices will depend on the number of actions.

Each transition matrix will represent the transition from

state sN to sA for taking action ap or adn. Therefore for

our set up, there will be two transition matrices T adn

SNSA

and T
ap

SNSA
.

– γ ∈ [0, 1] is a discount factor [14], which assists us

in determining the present value of a future expected

immediate rewards. It is used for emphasizing the

significance of the present in comparison to the future

rewards.

Let us define the total return Gt that the decision agent

(in our case the entity, protecting the computer network) will

obtain as a function of the sum of all immediate rewards at

time t, discounted back to the present moment.

Gt = Ra
t+1 + γRa

t+2 + γ2Ra
t+3 . . . =

∞∑
k=0

γkRa
t+k+1 (1)

Mathematically it’s convenient to use discounted reward

decision process because it avoids the infinite returns in cyclic

Markov processes and gives the opportunity for the decision

agent to think about the long-term future.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:4, 2018

247

The state value function v(s) of MDP will be defined as the

aggregate value of the expected total return in (1) beginning

from state s.

va(s) = E[Ga
t |St = st]

The value function may be decomposed into two parts:

immediate reward and discounted successor state γva(st+1).
This way we can obtain the Bellman equation:

va(s) = E[Ra
t+1 + γ[va(st+1)]St = s]

or this equation can be represented as:

va(si) = Ra
si + γ

∑
sj∈S

T a
ijv(sj) (2)

B. Policy and Policy Selection

Almost all reinforcement learning problems can be

formalized as MDP. The agent maps the set of the states onto

the probability space of taking each possible action. We can

define this mapping process as a policy for the agent, which is

a probability distribution formed out of possible actions, given

the current states [14].

π(a|s) = P (At = a|St = s) (3)

The policy describes the behavior of the agent and it’s

like his model. MDP policy depends on the current state

and not on the past information, i.e. it’s stationary and not

dependent on time. Given an MDP 〈S,A, T,R, γ〉 and π(a|s),
the state sequence is a Markov process 〈S,π 〉, the state and

reward sequence S1, R2, S2 . . . is a Markov Reward Process

〈S, Tπ, Rπ, γ〉. In the MDP besides the state value function,

we can also define an action-value function:

qπ(s, a) = Eπ[G
a
t |St = s,At = a]

A policy is greedy with regards to a value function, as well

as it is optimal according to that value function. The optimal

state-value function v(s) will be the maximum value of the

function across all policies:

v(s) = max
π

v(s)

It specifies the best possible performance in the MDP. The

solution of the MDP is the optimal value function. The optimal

action-value function q(s, a) will be the maximum value of the

function across all policies:

q(s, a) = max
π

qπ(s, a)

The optimal policy is the best policies over all policies and

it is defined as follows: π ≥ π
′
if vπ(s) ≥ vπ′ (s) for ∀s, and

also:

π∗(a|s) =
⎧⎨
⎩
1 , if argmax

a∈A
q∗(s, a)

0 , otherwise
(4)

There is always a deterministic optimal policy for any MDP

and if we know q(s, a), we can always find the optimal policy.

Optimal Bellman Equation for the value function is:

v∗(si) = max
a

Ra
si + γ

∑
sj∈S

T a
ijv

∗(sj) (5)

We can also create an optimal Bellman Equation for the

action-value function:

q∗(si, a) = Ra
si + γ

∑
sj∈S

T a
ij max

aj

q(sj , aj) (6)

The Bellman Optimality Equation doesn’t have any closed

solution form. In general, the following methods are usually

used: Value iteration, Policy iteration, Q-learning, and Sarsa.

In this paper, we will use Q-learning technique. The

action-value function estimates the expected utility of taking

action a in state s. It is the best expected sum of future

rewards.

Reinforcement learning can be employed to discover

an optimal action-selection policy [14] for a finite MDP.

Moreover, it learns an action-value function that finally

provides the expected value of following an optimal policy and

taking a specific action in a given state. A history of an agent

is a sequence of <state, action, reward>.The optimal policy

can be obtained by preferring the action that provides at each

state a maximum value. This learning method is also capable to

evaluate the expected value, calculated by all possible actions,

without any environment model.

C. Exploration vs. Exploitation

On the one hand, the agent unavoidably should explore

further opportunities and therefore deviate from the usual

behavior. This divergence is called exploration or taking

non-policy action. On the other hand, he should follow the

procedures for estimating the value functions. Whenever he

decides to obey, or follow the policy, we call the process

exploitation or taking policy action. There is a trade-off

between both terms, and it is challenging and necessary to

find a suitable balance, so the agent to be allowed to decide

appropriately.

The ε-greedy action selection provides a simple heuristic

approach in justifying between exploitation and exploration.

The concept is that the agent can take an arbitrary action a
from a uniform distribution with probability ε, 0 ≤ ε ≤ 1,

and subsequently to select with probability 1 − ε the current

best (greedy) action (Fig. 2). It is a standard practice to

decrease the value of epsilon over time as soon as the decision

agent becomes confident and needs less exploration. Low rate

implies a strong bias towards exploitation over exploration.

Fig. 2 ε-greedy action selection

π∗(a|s) =
⎧⎨
⎩

ε
m + 1− ε , ifα∗ = argmax

a∈A
q(s, a)

ε
m , otherwise

The idea is to ensure continuous exploration. All actions m
are considered with non-zero probability.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:4, 2018

248

D. Q-Learning Algorithm

The advantage of Q-learning is the notion that it is a

model-free procedure and an off-policy learning concept.

Moreover, the agent contemplates his succeeding move, based

on the expected utility of selecting each action in a particular

state. Subsequently, he updates towards a bootstrap estimate

of the actual return. At every stage, the succeeding state is

observed, and the maximum possible rewards, available for

all actions in that state are determined. Consequently, using

this information, the decision agent updates the action-value

function of the corresponding action in the current state. A

learning rate - α, (0 < α ≤ 1), which is associated with that

change will assist us to formulate an updating rule.

Let us consider an off-policy learning of action-values

q(s, a) and next action is chosen based on a behavior policy

ab ∼ μ(·|si), there is also an successor action aj ∼ π(·|si).
Then the updated q(s, a) will be given by:

q(sj , ai) ← q(si, ai) + α[Raj
sj + γq(sj , aj)− q(si, ai)]

If we allow the both behavior and target policies to

improve, the target policy π is greedy w.r.t. q(s, a) and

π(sj) = argmaxajq(sj , aj). However the behavior policy

μ is ε-greedy w.r.t. q(s, a). Therefore the Q-learning control

equation is:

q(sj , a) ← q(si, ai)+α[Ra
sj+γmax

aj

q(sj , aj)−q(si, ai)] (7)

Q-learning control converges to the optimal action-value

function q(s, a) → q∗(s, a). Proof is provided by Watkins

and Dayan [11] and additionally by Tsitsiklis [8]. An

interesting problem is also it’s convergence properties. A

convergence result is provided by Melo et al. [2] who

proved convergence under some restrictions on the sample

distribution. Maei et al. [3] introduced a greedy gradient

Q-learning approach that removes the previous conditions and

proved convergence regardless of the sampling distribution.

The described algorithm can be summarized in the subsequent

lines.

Algorithm 1 Q-learning approach

– Initialize q(s, a), for each s ∈ S, a ∈ A(s), randomly and
q(terminal − state) = 0
Repeat for each episode:

– Initialize si ∈ S
Repeat for each episode:

∗ Chose a from s, using ε-greedy policy derived from Q.
∗ Take action ai

· observe Rai
si· observe the new state sj

∗ q(si, ai) ← q(si, ai) +α[R
aj
sj + γmaxaj qπ(sj , aj)−

q(si, ai)]
∗ move to next state si ← sj

– until s is terminal

– end for

It is interesting to mention that there is a connection between

the learning rate that we select α and the convergence rate.

Even and Mansour [1] proved that for a polynomial learning

rate of the type 1/tω at time t, the convergence rate is

polynomial in 1/(1− γ), where γ is the discount factor.

However for a linear learning rate of the type 1/t at time t, the

convergence rate has an exponential dependence on 1/(1− γ).

IV. RESULTS

A. Data Description

The Transmission Control Protocol (TCP) packets in a

network allow establishing a connection, where data streams

are exchanged between two IP address sources at a specified

time and following determined rules [20]. The data set

employed in this paper is ISCX NSL-KDD Data Set [4],

which is a revised version of KDD CUP 99, DARPA [9],

administered by MIT Lincoln Labs. Lincoln Labs generated

a typical United States Air Force network in an experimental

setup for nine weeks so that they can extract raw TCP data.

They administered a local-area network imitating a real Air

Force environment and simulated various types of attacks.

The significance of the DARPA and KDD dataset is notable;

however, many authors questioned the extent to which the data

reflect the reality [10]. In our paper, we will use the ISCX

NSL-KDD dataset, provided by The Information Security

Centre of Excellence (ISCX) within the Faculty of Computer

Science, University of New Brunswick, Canada. There are

42 variables and one of them represents the condition of the

network, labeled as either normal or as one of the 24 different

variations of attacks.

B. Problem Setup

In order to start the analysis, we first need to consider

how we will set up the problem, so we can define it as a

reinforcement learning problem and then to attempt solving it,

using Q-learning approach. The environment of the agent is

completely unknown and non-stationary, therefore it is useful

to use a model-free procedure. The Q-learning approach will

allow us to calculate the Q-values, without estimating the

transition probability, just by setting a reward matrix, based

on the actions and states set up of MDP. The main purpose of

our paper is to find an optimal policy for the administrator at

any given step of his decision-making problem. As we have

mentioned above, the MDP is characterized by the following

components 〈S,A,R, T, γ〉. We already provided information

about the possible states and actions. The immediate reward

that the agent will receive at each state is defined by R :
S × A → R, or this is what he will obtain for taking action

a in state s. In our case, we will outline the reward based on

the initial behavior policy:

sN sA

R :

[
0 2

1 −1

]T
ap

adn

If the network is under attack sA, then the agent has two

options of actions to select from: either to ”protect” ap or

to ”do nothing” adn. On the one hand, if the current state is

for example ”attack” and the agent decides to ”protect”, then

the reward that he will be rewarded with is 2, however, if

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:4, 2018

249

he selects to ”do nothing”, then he will be penalized with a

value of −1. On the other hand, if the state is ”normal” and

the agent decides to ”protect”, he will receive 0 reward and

if he selects to ”do nothing”, he will get 1. This matrix is

selected in a way that the agent to be interested in protecting

the network only if there is an attack occurring. There are

transition probability functions associated with the alteration

from one state to another. For the Q-learning technique, we

don’t need to possess knowledge on them; however, we can

provide an estimate, using the data set, so that we can test

our results in subsection D. An approach that we will apply

in this paper is a bootstrap estimation. We will bootstrap the

data sequences following the conditional distributions of states

estimated from the original one and apply first maximum

likelihood estimation (MLE) on bootstrapped data sequences.

Then we will take the average of the estimates across all

samples, row normalized. We use 500 samples for the purpose

of the estimation. MLE for MDP is described in details in [7].

We can also calculate the 95% confidence intervals and to

report an error rate, based on the data set. The formula used

in the calculations is the following:

T adn

SNSA

MLE
=

nSNSA∑k

u=1
nSNu

with SESNSA
=

T
adn
SNSA√
nSNSA

Another second method is using Laplace smoothing approach,

which is very similar to the MLE, but uses an arbitrary positive

stabilizing parameter ε:

T adn

SNSA
=

nSNSA
+ε∑k

u=1
(nSNu

+ε)

Both methods give similar results for the transition

probability matrices:

T
ap

SNSA
:

[
1 0

1 0

]
sN

sA
;T adn

SNSA
:

[
.53 .47

0 1

]
sN

sA

SESNSA
:

[
.0026 .0028

0 0

]
sN

sA

The discount factor γ ∈ [0, 1] will depend on whether we

would like to create our agent narrow-minded, who is more

concerned about the present, or we would like to create him

more strategic oriented, who will first consider the future and

then he will make decisions about the present. In our analysis,

we will set γ = .9, but we will provide a sensitivity analysis

for three different levels of the γ = .1, γ = .5 and γ = .9,

Fig. 4. We can represent the decision path that the agent will

follow in Fig. 3.

Before starting the analysis, we need to check whether the

MDP will hold for this specific problem and we will do that

in R. The goal is to find an optimal policy if we start with the

initial behavior policy π : S → A, or that is π(a|s): if there is

an attack sA, the agent will select to protect the network ap.

We do not possess any information about the environment.

The only thing that we need is to set the reward matrix in

a way that the agent is more likely to choose to protect the

network if there is an attack occurring, but not necessarily, only

if by deciding to defend the network, the Q-value function is

maximized.

Fig. 3 Example for a Decision Path of the Agent

C. Calculation of the Q-Value and Optimal Policy Selection,
Using Q-Learning

The action-value function gives the expected utility of

taking a given action in a given state and following an

optimal policy thereafter. Q is a [S,A] matrix, in our case

it’s calculated with 100,000 number of iterations. We will

use the provided algorithm with a decaying learning rate of

α = 1/
√
n+ 2, where n is the number of transitions.

sN sA

Qa
s
∗ :

[
15.35415 17.08029

16.34766 13.71229

]
sN

sA

The Value function is an S length vector, with the same

number of iterations, we obtain:

V ∗
s :

[
17.08029

16.34766

]
sN

sA

The policy is also an S length vector. Each element of it

is a value that corresponds to an action which maximizes the

value function. The agent follows a specific policy π when

selecting actions in a given state as we defined in (3). Once

the action-value function is determined, the optimal policy can

be recreated by choosing the action with the most substantial

value in each state. We obtained the following result:

(πa
s)

∗ :

[
2

1

]

That implies that the policy, in this case, will be the

following: if there is a state 2 or if there is an ”attack”, the

agent should choose action 1, which we assigned earlier as

”to protect”. The agent observes the current state, selects an

action randomly, notes the resulting reward, then the new state

occurs.

The sensitivity analysis of the different levels of γ, as well

as the levels of iterations of the model can be observed in Fig.

4.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:4, 2018

250

Fig. 4 Discrepancy Means

D. Evaluation of the Model

We can use the estimated transition probabilities, to

determine how effective is our Q-learning agent performing.

For that purpose, we need to find a solution to (5) and to

solve the MDP with the knowledge that we possess for the

environment. In that situation, we will be able to evaluate our

model, by comparing the value V (s) that we calculated with

the Q-learning approach and the value that we will obtain by

solving the MDP, knowing the transition probabilities in (5).

The aim is to create a Root Mean Square Error (RMSE), so

we can test the effectiveness of the Q-learning approach. There

are several methods to solve (5), that is Linear Programming

(LP), Policy Iteration (PI) and Value Iteration (VI). All these

solutions require knowledge of the environment, represented

by the estimated transition probabilities. As shown in Table I,

we can observe the RMSE errors, using the results for V (s)
from Q-learning. The RMSE is calculated as:

RMSE =
1

N

√∑
s

[V (s)− V ∗(s)]2

where:

Vs :

[
17.08029

16.34766

]
sN

sA

TABLE I
RMSE FOR Q-LEARNING

Method V ∗(s)forsN V ∗(s)forsA RMSE
LP 17.02741 16.32467 0.02883
PI 17.02741 16.32467 0.02883
VI 16.89542 16.19268 0.12062

All models calculate the optimal policy as:

(πa
s)

∗ :

[
2

1

]

Which is that if there is an ”attack” occurring, the decision

agent should protect the network.

V. CONCLUSION AND FUTURE WORK

Q-learning, as a model-free control approach, is remarkably

promising, especially when employed in challenging decision

processes, where the traditional optimization techniques and

supervised learning methods are not applicable. An essential

advantage is the fact that the decision agent does not need any

information about the environment and it is able to perform the

analysis without any model or knowledge on the distribution.

Q-learning has an auspicious future in the intrusion detection-

and prevention- domains, it is a useful tool that needs to be

further developed and explored. Despite the research work

that has been published on the convergence properties, there

are still few challenges that need to be analyzed. The useful

utilization of Q-learning is helpful not only because of the

effective results obtained with the model but also because of

its potential combination with other models, that could benefit

and improve with the assistance of Q-learning.

REFERENCES

[1] E. Even-Dar and Y. Mansour, Learning Rates for Q-Learning, Lecture
Notes in Computer Science Computational Learning Theory, pp. 589-604,
2001.

[2] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, An analysis of
reinforcement learning with function approximation, Proceedings of the
25th international conference on Machine learning - ICML ’08, 2008.

[3] H. Maei, C. Szepesvari, S. Bhatnagar, D. Silver, D. Precup, and R. Sutton,
Convergent temporal-difference learning with arbitrary smooth function
approximation, NIPS-22, pp. 1204-1212.

[4] ISCX NSL - KDD Data Set, University of New Brunswick est.1785.
(Online). Available: http://www.unb.ca/cic/datasets/index.html.

[5] J. Cannady, Applying CMAC-based online learning to intrusion detection,
Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, vol. 5, pp. 405-410, Jul. 2000.

[6] J. Cannady, Next Generation Intrusion Detection: Autonomous
Reinforcement Learning of Network Attacks, In Proceedings of
the 23rd National Information Systems Secuity Conference, pp. 1-12,
2000.

[7] J. Fu and U. Topcu, Probably Approximately Correct MDP Learning and
Control With Temporal Logic Constraints, Robotics: Science and Systems
X, 2014.

[8] J. N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning,
Machine Learning, vol. 16, no. 3, pp. 185-202, 1994.

[9] KDD Cup 1999 Data. (Online). Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[10] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A detailed analysis
of the KDD CUP 99 data set, 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, 2009.

[11] P. Dayan and C. Watkins, Q-learning, Machine Learning, vol. 8, no. 3-4,
pp. 279-292, 1992.

[12] P. Laskov, K. Rieck, P. Dussel, and C. Schafer, Learning Intrusion
Detection: Supervised or Unsupervised?, Proceedings of the 13th ICIAP
Conference, pp. 50-57, 2005.

[13] P. Miller and A. Inoue, Collaborative intrusion detection system, 22nd
International Conference of the North American Fuzzy Information
Processing Society, NAFIPS 2003, pp. 519-524.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
s.l.: MIT Press, 1998.

[15] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection, ACM
Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009.

[16] VNI Global Fixed and Mobile Internet Traffic
Forecasts, Cisco, 13-Feb-2018. (Online). Available:
http://www.cisco.com/c/en/us/solutions/service-provider/visual-
networking-index-vni/index.html.

[17] X. Xu and T. Xie, A Reinforcement Learning Approach for Host-Based
Intrusion Detection Using Sequences of System Calls, Lecture Notes
in Computer Science Advances in Intelligent Computing, pp. 995-1003,
2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:4, 2018

251

[18] X. Xu and Y. Luo, A Kernel-Based Reinforcement Learning Approach
to Dynamic Behavior Modeling of Intrusion Detection, Lecture Notes in
Computer Science, Proceedings of ISNN, pp. 455-464, 2007.

[19] X. Xu, T. Xie, D. Hu, and X. Lu, Kernel least-squares temporal
difference learning, International Journal of Information Technology, vol.
11, no. 9, pp. 54-63, 2005.

[20] Z. Stefanova and K. Ramachandran, Network attribute selection,
classification and accuracy (NASCA) procedure for intrusion detection
systems, 2017 IEEE International Symposium on Technologies for
Homeland Security (HST), 2017.

Zheni Stefanova Zheni S Stefanova is a PhD candidate in the Mathematics
and Statistics Department at the University of South Florida (USF). Her
research interest is in cyber security and precisely statistical machine learning
techniques, applied to data mining in network security and software reliability
problems with an advisor Professor Kandethody Ramachandran. She is a
founder of the American Statistical Association Student Chapter at USF, two
times recipient of Tharp Endowed Award 2015 and 2017 and MV Johns Jr.
Scholarship 2016.

Kandethody Ramachandran Kandethody M Ramachandran is a Professor
of Mathematics and Statistics at the University of South Florida (USF). His
research interests are concentrated in the areas of applied probability and
statistics. His research publications span a variety of areas such as control
of heavy traffic queues, stochastic delay systems, machine learning methods
applied to game theory, finance, cyber security, and other areas, software
reliability problems, applications of statistical methods to microarray data
analysis, and streaming data analysis. He is also, co-author of three books.
He is the founding director of the Interdisciplinary Data Sciences Consortium
(https://idscbigdata.com/). He is also extensively involved in activities to
improve statistics and mathematics education. He is a recipient of the Teaching
Incentive Program award at the University of South Florida. He is also the
PI of 2 million dollar grant from NSF, and a co-PI of 1.4 million grant from
HHMI to improve STEM education at USF.

