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 
Abstract—In this article, the Johnson-Cook material model’s 

constants for structural steel ST.37 have been determined by a 
method which integrates experimental tests, numerical simulation, 
and optimization. In the first step, a quasi-static test was carried out 
on a plain specimen. Next, the constants were calculated for it by 
minimizing the difference between the results acquired from the 
experiment and numerical simulation. Then, a quasi-static tension test 
was performed on three notched specimens with different notch radii. 
At last, in order to verify the results, they were used in numerical 
simulation of notched specimens and it was observed that 
experimental and simulation results are in good agreement. Changing 
the diameter size of the plain specimen in the necking area was set as 
the objective function in the optimization step. For final validation of 
the proposed method, diameter variation was considered as a 
parameter and its sensitivity to a change in any of the model 
constants was examined and the results were completely 
corroborating. 
 

Keywords—Constants, Johnson-Cook material model, notched 
specimens, quasi-static test, sensitivity. 

I. INTRODUCTION 

HERE are numerous material models to estimate the 
stress-strain curve in plastic region. Most of these models 

have been obtained by experiments and each model gives 
different constants for various materials. To obtain these 
constants in earlier methods, experiments were designed in 
three groups to consider the effect of work hardening, strain 
rate and temperature. However, experiments are always 
expensive and time consuming and their results are not always 
reliable which can be due to the type of the testing machine, 
difficulty of performing the procedures under constant strain 
rate almost in all testing machines and the need for using 
sophisticated instrumentation, etc. [1]-[4]. Benallal and 
Berstad [5] used experimental data and optimization methods 
to calculate the model constants. Their experiments were done 
under three different strain rates and three different 
temperatures. In another study, Zhao and Lee [6] used a 
similar method to determine the work hardening behaviour of 
the material (isotropic or kinematic). In their work, specimens 
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were put under tension and pressure using three point bending 
test method. Recently, combined methods such as numerical 
simulation plus optimization, are used to obtain the constants 
of material models. For example, Sasso et al. [7] used 
Hopkinson pressure bar to carry out their experiments and 
then numerically simulated their process. They used 
specimens with three different lengths and considered the 
temperature variation due to plastic deformation to make the 
results more accurate. In another study, Majzoobi et al. [8] 
used a combined experimental, numerical, and optimization 
technique to determine the constants of Zerilli-Armstrong 
material model. In another research, Majzoobi and Rahimi 
Dehgolan [9] used the same method but this time to obtain the 
constants of Johnson-Cook damage model. They used the 
diameter decreasing as the objective function in optimization. 
In this study, static constants of Johnson-Cook material model 
for a plain specimen of structural steel, ST.37, have been 
obtained by using an experimental, numerical simulation and 
optimization method. In optimization process, easily 
measurable geometrical parameters were used to define the 
objective function. To validate the procedure, obtained 
material model constants were used to numerically simulate a 
simple tension test performed on three notched specimens 
with three different notch radii. 

II. EFFECTIVE PARAMETERS ON MATERIAL BEHAVIOR 

Stress-strain behaviour of materials in plastic region is 
generally affected by three parameters: strain, strain rate, and 
temperature. Plastic deformation is an irreversible process 
which means that the behaviour of a material under specified 
stress and strain is influenced by deformation history in 
addition to the three parameters mentioned before (1): 

 

 historynDeformatioTf ,,,   (1) 
 
Under low and fixed strain rates, metals show work 

hardening behaviour, meaning that strength of the material 
increases by increasing the strain value. This phenomenon can 
be formulated by (2): 

 

.0
nk   (2) 

 
where σ0 is the yield stress, k is the coefficient of work 
hardening, and n represents the work hardening's power. 
Metals usually show different behaviour under various strain 

Obtaining Constants of Johnson-Cook Material 
Model Using a Combined Experimental, Numerical 

Simulation and Optimization Method 
F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola 

T



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:9, 2016

1623

 

 

rates. Effect of strain rate on stress is shown by (3). However, 
it is not valid for high strain rates. 
 

. Ln  (3) 
 
Most of the energy in a plastic deformation is transformed 

into heat. In dynamic deformations, not enough time is usually 
available for heat transfer between the specimen and 
environment which ends in increasing the temperature of the 
specimen. The temperature increment can be calculated by (4): 

 

Cp
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where ∆T is temperatures increase, ρ is density, and Cp is 
specific heat. Effect of temperature on stress is formulated as 
(5): 
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where Tmelt and T are melting and environment temperatures, 
Tr is reference temperature used to obtain σr, and m is an 
experimental parameter. 

III. REVIEW OF SOME WELL-KNOWN MATERIAL MODELS 

A. Power Law Model 

This model which is defined by (6) only includes the effect 
of strain rate but the coefficients can be considered as a 
function of temperature. 

 
mnk    (6) 

B. Zerillie-Armestrong Model 

Zerillie and Armestrong [10] presented equations to model 

the behaviour of materials with FCC (Face Centered Cubic) 
and BCC (Body Centered Cubic) crystal structures. These 
equations are given in (7) and (8): 

 

  BCCforCLnCTCCC n 54321 exp    (7) 

 

  FCCforLnCTCCC  4321 exp   (8) 

 
where C1 is to consider the effect of residual stress, C2 is used 
for curve fitting, C3 and C4 are the coefficients of thermal 
softening and strain rate, respectively. Also C5 and n are to 
account the strain hardening behaviour of the BCC metals. 

C. Johnson-Cook Model 

Johnson and Cook [11] presented (9) to model the 
behaviour of material considering the influence of work 
hardening, strain rate and temperature. 
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 where A and B are strain hardening coefficients, C is non-
dimensional sensitivity coefficient of strain rate, m and n 
represent power of thermal softening and strain hardening 
respectively and T*is defined by (10). 
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IV. EXPERIMENTS 

A. Experimental Procedure 

In this study, quasi-static tension tests were done on one 
plain and three notched specimens by using an Instron tensile 
testing machine. Specimens were chosen according to ASTM 
standard (Fig. 1). 

 

 

Fig. 1 Geometrical specification of notched specimens (in millimeter) 
 
Tension test of plain specimens was carried out by using an 

extensometer of 50 millimeters long. Since for a plain 
specimen, the location where necking begins, depends on the 
location where structural faults are concentrated and cannot be 
determined before the experiment, the extensometer was set in 

a position symmetric with respect to the center of specimen. 
However, in notched specimens, plastic deformation is 
concentrated at the location of the notch and displacement at 
two ends of specimen after fracture is much less than the plain 
specimen, therefore the tension tests of notched specimens 
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were done by using an extensometer of 25 millimeters long. 
Fig. 2 shows the extensometer set on the plain specimen 
during the tension test. 

 

 

Fig. 2 Extensometer set on the plain specimen during the tension test  

B. Experimental Result  

Experimental result obtained from the notched specimens 
validates that increasing the notch radius increases time to 
fracture, which is due to strain rate reduction caused by a 
slight increase in the length of the specimen. Furthermore, it 
has been shown that increasing the notch radius decreases the 
force to fracture, which is due to the inverse proportionality of 
strain rate and notch radius. Table I includes experimental 
result after ultimate fracture. 

 
TABLE I 

EXPERIMENTAL RESULT AFTER ULTIMATE FRACTURE 

Type of 
specimen 

Time to 
fracture 

(S) 

Final 
displacement at 
two ends (mm) 

Maximum 
force to 

fracture (N) 

Diameter 
reduction at 

fracture location 
(mm) 

Plain 121.8 10.15 94156.6 3.10 

notched R=7 38.3 3.19 44981.2 0.87 

Notched R=10 39.05 3.25 43110.1 1.32 

Notched R=12 41.14 3.42 42690.0 1.44 

V. DERIVING THE CONSTANTS 

A. Defining an Objective Function 

In this paper, a combined experimental, numerical 
simulation, and optimization method has been used to obtain 
the constants of Johnson-Cook material model. At first, a 
quasi-static tension test was carried out on a specimen by 
using an Instron tensile testing machine. In order to obtain the 
constants, the value of fracture strain which is needed can be 
calculated by accurately measuring the minimum fracture 
diameter to be used in (11): 

 

f
f d

d
Ln 02  (11) 

 
where d0 is the initial diameter, and df is the diameter measured 
after fracture. Necking diameter was chosen as the 
optimization parameter since it is the only parameter that the 
value of fracture strain depends on. Therefore, in order to 
determine the constants, an objective function was defined to 
minimize the difference between the experimental 

measurements and simulation results obtained for necking 
diameter (12): 
 

numericalerimental ddOBJ  exp
 (12) 

 
For defining the objective function on the basis of material 

model constants used in simulation, it is approximated by a 
polynomial of second order as (13): 
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where xi is the design parameter (constant of material model), 
n is the number of design parameters and a0, ai and bij are the 
coefficients of the objective function. The number of 
equations required to be solved in order to obtain these 
coefficients, equals to the number of polynomial coefficients. 
The equations usually come from numerical simulation with 
different values for material model constants. In this paper it is 
intended to obtain the first three material parameters of 
Johnson-Cook relation (A, B and n), shown as x1, x2 and x3 in 
the objective function. Expanding the polynomial for these 
parameters we have (14) 
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The above equation has 10 coefficients therefore 10 

equations are required to calculate the coefficients. As 
mentioned before these equations come from numerical 
simulation with different values for material model constants. 
So experiments were simulated using finite element. Table II 
shows the results from simulation with 10 different sets of 
material model constants. By solving the equations, the 
objective function is rewritten as (15) 
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B. Using Genetic Algorithm 

In the next step, the objective function was optimized using 
GA (Genetic Algorithm). The GA is the most widely used 
optimization method to tackle engineering problems. The GA 
was popularized by Holland [12] and has emerged as a global 
search method to simulate the evolution in complex physical 
and biological systems. At each iteration, GA generates a 
population of points that approach the optimal solution by 
using stochastic and not deterministic operators. It starts by 
initializing a set of individuals that form the first population. 
Then, the first population is submitted to genetic operators, 
resulting in the evolution of populations through generations 
(iteration cycles). In each generation, the best individuals are 
chosen by evaluation according to the objective function. The 
individuals that are selected as better, have a higher possibility 
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of being included in the recombination procedure. Mutation, 
which periodically changes the parts of individuals, is the 
main operator to protect the algorithm from permanently 
losing genetic material through the evolution of generations. 
Crossover is used for the recombination of genetic exchange 
between individuals. Another operator is migration which is 

the movement of individuals among sub-populations of 
existing individuals, with the best individuals from one sub-
population replacing the worst individuals in another sub-
population. GA proposes the best individual as the solution to 
the problem. A flowchart of a basic GA is shown in Fig. 3. 

 
TABLE II 

REDUCED DIAMETER OBTAINED FROM SIMULATION WITH 10 DIFFERENT SETS OF CONSTANTS 

(A,B,n) Reduced diameter Obj. (A,B,n) Reduced diameter Obj. 

390,200,0.38 3.130818333 0.033818 410,205,0.37 3.178673333 0.081673 

390,210,0.38 2.958267143 -0.13873 410,205,0.38 3.2144525 0.117453 

400,200,0.38 3.188548333 0.091548 410,205,0.39 3.204138333 0.13 

400,200,0.385 3.18576 0.08876 410,200,0.38 3.27388 0.17688 

405,200,0.38 3.259688333 0.11269 420,200,0.38 3.379681667 0.2 

 

 

Fig. 3 Flowchart of a basic GA [12] 

C. Results 

Final values obtained for Johnson-Cook material models 
constants (A, B and n) are 380, 187.7, and 0.38, respectively. 
The result of plain experiments was used to drive constants. 
The calculated A, B, and n were used to simulate the 
experiments done for plain specimens in Ls-Dyna and the 
result for diameter reduction was completely reasonable. Fig. 
4 shows the necking regions obtained after experiments and 
simulations for plain specimens. Finally, these constants were 
used to simulate the experiments done for the notched 
specimens. Fig. 5 shows the necking regions obtained after 
experiments and simulation for the notched specimens. Also, 
stress-strain curves from experiments and simulation have 
been compared in Figs. 6-8. Table III compares between the 
values obtained for diameter reduction from experimental 
process and simulation. 

VI. SENSITIVITY ANALYSIS 

In this study, variations of geometrical parameters resulted 
from utilizing different material model constants in simulation 
were used to derive the Johnson-Cook material model 
constants. In order to validate the method, sensitivity of 
diameter increment (Δd) toward variations of obtained 

constants, A, B, and n was investigated and the results were 
illustrated in Figs. 9-11.  

It can be seen that changing the value of each Johnson-
Cook material model constants varies the value of Δd 
considerably. Therefore, it is acceptable to use diameter 
increment (Δd) as a parameter to obtain the constants. Fig. 12 
shows percentage of variation in ∆d parameter by exerting a 
30% change in each of the three constants. It can be seen that 
∆d shows the maximum and minimum sensitivity toward A 
and n, respectively. 

 
TABLE III 

COMPARES BETWEEN THE VALUES OBTAINED FOR DIAMETER REDUCTION 

FROM EXPERIMENTS AND SIMULATIONS 

Type of 
specimen 

reduction in diameter 
obtained from 

experiment(mm) 

reduction in diameter 
obtained from 

simulation(mm) 
Error % 

R=7 0.87 0.90 3.4483 

R=10 1.32 1.27 3.7879 

R=12 1.44 1.41 2.0833 

VII. CONCLUSION 

In this study, the constants of Johnson-Cook material model 
for a plain specimen of structural steel ST.37 were obtained by 
using a combined experimental, numerical simulation, and 
optimization method. It was shown that these constants could 
be used to simulate the tension behaviour of notched 
specimen. Calculation process started with a quasi-static 
tension test done for a plain specimen. After simulating the 
test, a second degree polynomial error function was defined as 
the difference between experimental measurement and 
numerical simulation results of fracture diameter and 
optimized by using genetic algorithm. Then, simple tension 
tests were done on three notched specimens with different 
notch radii, and by using the constants obtained for plain 
specimen experiment, tension tests for notched specimens 
were numerically simulated. Results from experiments and 
numerical simulation were in good agreement. Finally, a 
sensitivity analysis was performed to confirm the method used 
in this paper which is validated by using diameter increment 
(Δd) as a parameter to obtain the constants, and it was shown 
that the diameter increment (Δd) is considerably sensitive to 
changing the A constant.  
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Fig. 4 Necking regions obtained after experiments and simulations for plain specimens 

 

 

(a) 
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(b) 

Fig. 5 Comparing the necking regions obtained after experiments and simulations for notched specimens  
 

 

Fig. 6 Stress-strain curves obtained from experiments and simulations for notched specimen r =7 mm  



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:9, 2016

1628

 

 

 

Fig. 7 Stress-strain curves obtained from experiments and simulations for notched specimen r =10mm  
 

 

Fig. 8 Stress-strain curves obtained from experiments and simulations for notched specimen r =12 mm  
 

 

Fig. 9 Sensitivity of ∆d (in percent) toward constant A 
 

 

Fig. 10 Sensitivity of ∆d (in percent) toward constant B 
 

 

Fig. 11 Sensitivity of ∆d (in percent) toward constant n 
 

 

Fig. 12 Variation in ∆d (in per cent) parameter by exerting a 30 per 
cent change in A, B, and n 
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