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 
Abstract—In the crack growth analysis, the Stress Intensity 

Factor (SIF) is a fundamental prerequisite. In the present study, the 
mode I stress intensity factor (SIF) of three-dimensional penny-
Shaped crack is obtained in an isotropic elastic cylindrical medium 
with arbitrary dimensions under arbitrary loading at the top of the 
cylinder, by the semi-analytical method based on the Rayleigh-Ritz 
method. This method that is based on minimizing the potential 
energy amount of the whole of the system, gives a very close results 
to the previous studies. Defining the displacements (elastic fields) by 
hypothetical functions in a defined coordinate system is the base of 
this research. So for creating the singularity conditions at the tip of 
the crack the appropriate terms should be found. 
 

Keywords—Penny-shaped crack, Stress intensity factor, Fracture 
mechanics, Ritz method. 

I. INTRODUCTION 

NE of the subjects recently used in the study of failure of 
structures and blocks under alternation loads, is the 

fracture mechanics and the study of now failure parameters 
influence structures. The crack growth and development rate 
depends on material toughness and amount of energy release 
that is if the stress intensity factor (SIF) oversteps a certain 
amount on the tip of the crack, the crack will grow. In this 
study we examine the elastic fields which include stress and 
strain and accordingly the stress intensity factor (SIF) would 
calculated on the tip of the crack. 

A. Previous Literature 

For a through finding on the SIFs of cracks in the literature, 
up to the year 2000, one should refer to the handbooks of 
Murakami [1] and Tada et al. [2]. A close scrutiny of the 
literature reveals that, except for a very few specific cases, the 
exact solution to the mode I SIF of three-dimensional penny-
shape and elliptic cracks under polynomial loading at infinity 
has obtained by Shodja and Ojaghnezhad [3]. Most of the 
closed-form solutions to the SIF pertinent to a penny shape 
crack in an infinite isotropic elastic body are devoted to at 
most linear far-field loading. The more general geometry of an 
elliptic crack under a uniform far-field tension was considered 
by Irwin [4] employing the stress function theory. 
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B. Ritz Method 

Hereunto, the tridimensional cracks were mainly studied 
using the finite element-method, which results in much cost 
and time consumption, because of too element division and 
difficulty at defining tridimensional singular element. On the 
other hand, the need for more efficient method is felt, 
regarding inability of laboratory methods in the study of 
tridimensional cracks. The purpose of this study is to achieve 
more inexpensive and rapid methods other than existing 
methods like finite-element method. Ritz method follows the 
principle of system's total potential energy constant. The base 
is to define point's transformation in the form of imaginary 
functions in the systems defined coordinates and to minimize 
the systems total potential energy. One of the features of this 
method is the possibility of using local coordinates. In this 
method, at first we write the function of the system's total 
potential energy. An imaginary function is then determined for 
displacement, such that satisfy the geometric border 
conditions (including displacements and gradients). Imaginary 
function is placed to the potential equation and integrated on 
the structure dimensions under study. The obtained potential 
function is then minimized towards unknown parameters, thus 
we obtain the "n equation and n unknown factor" system, by 
solving these equations we may represent the shape function.  

C. Penny-Shaped Crack 

Consider an ellipsoidal inhomogeneity in a tridimensional 
environment (Fig. 1). It is called crack in the situation that the 
elastic modulus of inhomogeneity is equal to zero [3]. 

 

 

Fig. 1 The ellipsoidal inhomogeneity References 
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Fig. 2 An isotropic elastic cylindrical medium with a penny-shaped 
crack 

 
According to the Fig. 1, when a3→0 and a1=a2=a, this 

crack is defined as a penny-shaped crack with radius a. The 
problem under study in this paper is defined as an isotropic 
elastic cylindrical medium with length of 2L, and diameter of 
2B, wide q loading along the length of cylinder and in the 
cylinder's 2 ends sides (Fig. 2). Penny-shaped crack with 
diameter of 2a is located at the center of cylinder. The most 
important mode of Penny-shaped crack failure, is mode I 
(opening mode). In this paper, penny-shaped crack is under 
mode I loading. 

II.SOLVING THE PROBLEM OF CYLINDRICAL MEDIUM WITH 

PENNY-SHAPED CRACK 

According to existing symmetry in the cylindrical medium 
of Fig. 2, we consider the medium as Fig. 3, to solve the 
problem easily. A local polar coordinates (R,Ԅ) has been 
defined on the tip of the crack, to write the relations (Fig. 3). 
Displacement equation, in both axis z and r is considered as 
(1). These functions satisfy the geometric bordered conditions 
which include: (uz=0 at Ԅ=0, 0R(B-a) &ur0 at R=0). Stress 
singularity on the tip of the crack, has been insured by √R. 
Each of the equations in (1) has the (N+1) unknown 
coefficient (A and B) and N is obtained from (2). Generally, 
there are (2N+2) unknown coefficient. 

 

 

Fig. 3 A medium with local polar coordinates (R,Ԅ) 
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We define the equation of systems total energy as (3), in 

which U and Ware systems strain energy and the work 
obtained from external force respectively. 

 

                                   (3) 

A. Strain Energy (U) 

Regardless of the strain energies, resulting from axial and 
shearing loads, U is defined as (4), in which σanε are stress 
and strain respectively, and integration is done in the whole of 
medium. 

 
1

.
2

U dV                                  (4) 
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σ.ε is written as (5), according to strains relations in the 
cylindrical coordinates and also problem conditions (uθ=0). 
Stresses are defined as (6), according to the elastic relations in 
the isotropic medium, thus it's possible to solve (4). To 
integrate in the whole of medium, according to singularity of 
stresses on the tip of the crack, we have used the Duffy 
transformation method, which exists in the reference number 
[5]. 
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B. External Force Work (W) 

In this problem, W is obtained from (7), according to the 
loading along axis z. integration is done on the loading surface 
(z=L). 

 

 .zW U q r dA                           (7) 

C.  Solving the Equations 

To solve the existing integrals in the W and U equations, we 
have used the numerical method of Gauss-Legendre, which 
exists in reference number [6]. To do this, we have done the 
programing in FORTRAN90. In this step of Ritz method, 
system's total potential energy is minimized toward unknown 
coefficients in (8), in which α:(A,B). If (8) be written in the 
form of matrix, (9) will obtain, in which [K] is the matrix 
obtained from dU/dα, and [X] is the matrix of unknown 

U W  



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:9, 2014

1515

 

co
a 
m

 

 

re
is 
co
str

of
str
ax
th
 

 

el
pr
th
un
ch

(2
an
re
4,
sh
an
in

cr
w

(p
of
co
 
 

oefficients and
squared matr

matrix with dim
 

By differenti
elating terms i

obtained by s
oefficient of m
ress field will

D. Stress Inte

Irwin has de
f the crack as 
ress in the poi
xis z, as appro
he (10), the mo

We have sol
lastic moduli 
roblem dimen
he amounts of 
nder loading q
hanging p in (

A. Result's D

We have don
2006). The pro
nd in general,
esults have be
, by increasin
hape gradient 
nd also the 
ncreasing of th

As you obse
rack (R=0), t

which shows th
Also the dia

p) increased. W
f functions, us
onvergent, SIF

d [F] is the m
rix, with dim

mension (2N+2

U W

  
  

 
  

 K

iation from V 
in the matrix, 
solving (9). B

matrix [X] in (
l obtain. 

ensity Factor (

fined the stre
(10). In this 

ints with coor
oaches the tip 
ode I SIF, will

1
0

lim
R

K




1 2K 

III. R

lved the prob
E=1 kg/cm, 

nsion has been
a=0.5 cm, B=

q=1.0 kg/cm2
1), from p=2 t

Diagrams 

ne the program
ogram include
, we have don
en shown in F
g the order of
at the center o
answers hav

he functions' o
erved in Fig. 
the stress dia
he singularity 
agram has con
We have calcu
sing (11) and i
F has achieved

matrix obtained
mensions (2N+

2)*1. 

0
W U

 


  


    X F      

and W ((4),(7
unknown coe
y replacing th
1), the displac

(SIF) 

ss intensity fa
paper we calc

rdinates (R=1e
of the crack, a
l obtain from 

2 zR     

2 zR         

RESULTS 

blem in an iso
and Poisson

n selected, acc
=5.0 cm, L=10
2. We have so
to p=10. 

ming in the Co
es 40 function
ne 700 lines 
Figs. 4 and 5.
f functions (p
of the crack, w

ve converged
order (p), incre

5, by approa
agram will ap
of stress on th

nverged, as th
ulated the SIF
it has shown i
d the amount o

d from dW/dα
+2), [X] and 

W





         

                     

7)), and replac
efficient matr
he obtained un
cement field a

actor (SIF) on
culate the am
e-10, Ԅ=0), al
and by replaci
(11). 

                     

                     

otropic mediu
n's ratio ν=0.
cording to Fig
0 cm. The pro
olved the prob

ompaq visual 
ns and 2 subr
coding. The r
. As it shown 
p), the crack o
will approache
, which sho
eases the accu
aching the tip
pproach to ex
he tip of the cr
he order of fu
F, at different
in Fig. 6. Afte
of SIF=0.83 a

 

α. [K] is 
[F] are 

       (8) 

       (9) 

cing the 
rix, [X], 
nknown 
and also 

n the tip 
mount of 
long the 
ing it in 

     (10) 

     (11) 

um with 
.3. The 
g. 2, by 

oblem is 
blem by 

Fortran 
routines 
relating 
in Fig. 

opening 
es zero, 
ws the 

uracy. 
p of the 
xtreme, 
rack. 
unctions 
t orders 
er being 
at p=10. 

 

for
Th

B. Results' Co

In the Tada's
r the special s
hese formulati

‐1

D
is
p
la
ce
m
en

t 
(c
m
)

r(c

p=2

p=7

Fig. 4 Crac

Fig. 5 Stress 

Fig. 6 Stress In

omparing 

s handbook, th
tate of extrem
ions have bee

0.
0.
0.
0.
0.
0.
0.

‐0.5

cm) ''distance

p=3

p=8

k opening shap
 

diagram (in Ԅ=

ntensity Factor (

his problem h
me medium an

en shown in 

0
.1
.2
.3
.4
.5
.6
.7

0

e from center 

p=4

p=9

pe 

=0) 

(SIF) 

has been form
d loading at in
(12) and (13

0.5

of crack''

p=5 p=

p=10
 

 

 

mulated 
nfinity. 
3). The 

1

=6



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:9, 2014

1516

 

cr
m
re
 

 

 

(r=
al

di
(F
di
ve

rack opening s
method, which
esults are very

We have ca
=0), which re
lso calculated 

Fi

C. General D

In this sectio
ifferent ratio 
Fig. 7). This 
ifferent dimen
ertical axis in 

 

Fi

V

shape, for p=1
h has been sh
y close. 

alculated the 
epresent the 0
the error in th

ig. 7 Crack open

Diagram to Ca

on, we have p
of crack's dim
diagram can 
nsions of the 
Fig. 7 as (SIF

ig. 8 Crack open

1K 

4
( , 0)r z  

10 has been co
hown in Fig. 

        

error on the 
.21% error at

he SIF at p=10
 

ning shape com

alculate SIF 

presented the 
mensions to 
be used for o
 crack. We h

F/√πa). 

ning shape com

2
q a




 2

2
1

q a
E







ompared with
7. As you s

                     

          

center of the
t that point. W
0, which is 3.9

mparison 

general diagr
medium dim
obtaining the 
have normaliz

mparison 

2r

 

h Tada's 
see, the 

     (12) 

   (13) 

e crack 
We have 
95%. 

 

ram for 
mensions 

SIF at 
zed the 

 

dis
fie
nu
ele
ve

[1]

[2]

[3]

[4]

[5]

[6]

 

 

The Ritz m
splacement fie
eld, because 
umerical calcu
ement method
ry applicable.

Murakami Y. 
York (1986).
Tada H., Paris
Production Inc
Hossein M. Sh
of lamellar in
1499–1510 (20
Irwin GR. Cr
Trans ASME S
M.G. Duffy. Q
singularity at 
(1982). 
Paul F. Byrd, 
nonclassical w

IV. CO

method is ve
eld, but it is 

of different
ulations of inte
d is cost and 
. 

REFE

Stress intensity 

s P., Irwin G. The
c., St. Louis (200
hodja., FarzanehO

nhomogeneities. E
007). 
rack-extension fo
Ser E J ApplMec
Quadrature over 
a vertex. SIAM 

David C. Galent
weight functions. M

NCLUSION 

ery accurate 
somewhat les
tiation on f
egrals. Howev
time consum

ERENCES   
factors handbook

e stress analysis o
0). 
Ojaghnezhad. A 
Engineering Frac

orce for a part-th
ch, 29, pp. 651–4 

a pyramid or cu
J. Number. Ana

t. Gauss quadratu
Moffett fields, Ca

in obtainin
ss accurate in
functions and
ver, since the 

ming, this met

k. Pergamon Pre

of cracks handboo

general unified tr
cture Mechanics,

hrough crack in 
(1962). 
ube of integrand
l, 19 (6), pp. 126

ure rules involvin
alif (1970). 

ng the 
n stress 
d also 
finite-

thod is 

ess, New 

ok. Paris 

reatment 
, 74, pp. 

a plate. 

ds with a 
60–1262 

ng some 


