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Obstacle and Collision Avoidance Control Laws of a
Swarm of Boids

Bibhya Sharma, Jito Vanualailai, Jai Raj

Abstract—This paper proposes a new obstacle and collision
avoidance control laws for a three-dimensional swarm of boids.
The swarm exhibit collective emergent behaviors whilst avoiding the
obstacles in the workspace. While flocking, animals group up in order
to do various tasks and even a greater chance of evading predators. A
generalized algorithms for attraction to the centroid, inter-individual
swarm avoidance and obstacle avoidance is designed in this paper.
We present a set of new continuous time-invariant velocity control
laws is presented which is formulated via the Lyapunov-based control
scheme. The control laws proposed in this paper also ensures practical
stability of the system. The effectiveness of the proposed control laws
is demonstrated via computer simulations.

Keywords—Lyapunov-based Control Scheme, Motion planning,
Practical stability, Swarm.

I. INTRODUCTION

Aplatform of biologically inspired concepts and behaviors
has been applied into the real life situations. This has

inspired researchers since numerous problems can be solved
without rigorous mathematical approaches. It is basically
the category of algorithms that imitate the way nature
performs. This set of algorithms falls under various categories
such as Artificial neural networks, Genetic algorithms,
Evolutionary algorithms, Particle swarm optimization, Ant
colony optimization, Fuzzy logic and others [1].

These have mostly prevailed in the field of robotics where
solutions are sought for dull, dirty, difficult or dangerous tasks.
The swarm behavior and its principles are now being used by
scientists and researchers in many new approaches such as in
optimization and in control of robots [2], [3]. The use of robots
with the concept of swarming is significantly increasing in the
manufacturing arena, not only for productivity enhancement
but also for greater versatility and flexibility [4].

There is also the issue of limited resources which has
brought about the use of multiple agents instead of single
individuals. The advantages include flight control, satellite
clustering, exploration, surveillance, foraging and cooperate
manipulation [5], [6]. The applications of foraging could
involve search-and-rescue teams at disaster sites. Teams of
robots could be deployed to collect hazardous materials after
a spill, nuclear reaction or other accidents in minimal time,
hence, saving further loss in the environment. All in all, team(s)
of homogeneous (even heterogeneous) robots working towards
a common objective can satisfy stringent time, manpower and
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monetary demands, enhance performance and robustness, and
harness desired multi-behaviors, each of which is extremely
difficult if not entirely impossible to obtain from single agents
[7].

The artificial potential field method has been frequently
utilized to solve a wide range of problems permeating from
robotic applications. Algorithms in this category tend to use
physical analogies to establish artificial potential fields with
repulsive fields around obstacles and attractive fields around
goals [8]. A collision free path is determined by how much the
robot is attracted to or repelled by the poles. The governing
principle behind the artificial potential field method is to
attach attractive field to the target and a repulsive field
to each of the obstacles. Artificial potential fields methods
have several advantages, the most important one being the
easier implementation. The other advantages includes easier
analytic representation of system singularities, limitations,
and inequalities, its simplicity, favorable processing speeds,
decentralization and scalability features that outweighs other
methods [9].

This paper considers the motion planning and control of
the swarm model when obstacles are introduced into the
workspace. That is, we construct a Lyapunov-like function via
the LbCS that guarantees the emergent behavior arising from
the swarm, considering all practical limitations and constraints
due to fixed obstacles.

II. A THREE-DIMENSIONAL SWARM MODEL AND ITS

PRACTICAL STABILITY

At time t ≥ 0, let (xi(t), yi(t), zi(t)), i = 1, 2, . . . , n, be the
planar position of the ith individual, which we shall define as
a point mass residing in a disk of radius ri > 0,

bi =
[
(z1, z2, z3) ∈ R

3 : (z1 − xi)
2 + (z2 − yi)

2

+(z3 − zi)
2 ≤ r2

i

]
.

Using the above notations, we have a system of first-order
ODEs for the ith individual, assuming the initial condition at
t = t0 ≥ 0:

x′
i(t) = vi(t)

y′
i(t) = wi(t)

z′i(t) = ui(t)

xi0 := xi(t0), yi0 := yi(t0), zi0 := zi(t0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
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If gi(x) := (vi, wi, ui) ∈ R3 and G(x) :=
(g1(x), . . . ,gn(x)) ∈ R

3n, then our swarm system of n
individuals is

ẋ = G(x), x0 = x(t0). (2)

Definition 1: System (2) is said to be
(S1) practically stable if given (λ,A) with 0 < λ < A, we

have ‖x0 − x∗‖ < λ implies that ‖x(t) − x∗‖ < A,
t ≥ t0 for some t0 ∈ R+;

(S2) uniformly practically stable if (S1) holds for every t0 ∈
R+.

The following comparison principle is adapted from [10] to
analyse the practical stability of system (2),

K = {a ∈ C[R+, R+] : a(d) is strictly increasing in d and
a(d) → ∞ as d → ∞},
S(ρ) = {x ∈ R

3n : ‖x−x∗‖ < ρ} and, for any Lyapunov-like
function V ∈ C[R+ × R

3n, R+],

D+V (t, x) := lim sup
h→0+

⎛
⎝ V (t+h,x+hG(x))

h

−V (t,x)
h

⎞
⎠

for (t,x) ∈ R+×R
3n, noting that if V ∈ C1[R+×R

3n, R+],
then D+V (t,x) = V ′(t,x), where

V ′(t,x) = Vt(t,x) + Vx(t,x)G(x).

Theorem 1: Lakshmikantham, Leela and Martynyuk [10].
Assume that
1. λ and A are given such that 0 < λ < A ;
2. V ∈ C[R+×R

3n, R+] and V (t,x) is locally Lipschitzian
in x ;

3. for (t,x) ∈ R+ × S(A), b1(‖x − x∗‖) ≤ V (t,x) ≤
b2(‖x − x∗‖), b1, b2 ∈ K and D+V (t,x) ≤
q(t, V (t,x)) , q ∈ C[R3

+, R];
4. b2(λ) < b1(A) holds.

Then the practical stability properties of the scalar differential
equation

h′(t) = q(t, h) , h(t0) = h0 ≥ 0 ,

imply the corresponding practical stability properties of
system (2).

III. DEPLOYMENT OF LYAPUNOV-BASED CONTROL

SCHEME

The principal objective is to construct an artificial potential
field function (APF), that is, a Lyapunov-like function for
motion planning and control of the swarm of n boids. From
the Lyapunov-like function, we derive the velocity controls,
vi, wi,and ui, such that the swarm of boids will be able to
exhibit swarming behavior in certain direction whilst avoiding
collisions and obstacles. The control scheme appropriately
combines these positive and negative potential functions to
form a Lyapunov-like function candidate – a platform to design
the nonlinear velocity controllers for the swarm of boids. This
Lyapunov-like function candidate will also be utilized in a later
section to prove the practical stability of the system.

A dichotomy of APFs will be designed in the following
subsections, that is, we construct attractive functions and
obstacle avoidance functions for the attraction to the centroid
and the repulsion from the various obstacles, respectively.

A. Attraction to the Centroid

To ensure that the individuals of the swarm are attracted
towards each other and also form a cohesive group by having
a measurement of the distance from the ith individual to the
swarm centroid, we use the following attraction function:

Ri (x) = 1
2

[(
xi −

1
n

n∑
i=1

xi

)2

+

(
yi −

1
n

n∑
i=1

yi

)2

+

(
zi −

1
n

n∑
i=1

zi

)2
]

for i ∈ N.
This will be part of a Lyapunov-like function for system (2)

which ensures that ith individual is attracted to the swarm
centroid.

B. Inter-individual Collision Avoidance

With system (1) of the ith individual in mind and for the
boids to avoid each other, we use the following repulsive
function:

Qij(x) :=
1

2

[
(xi − xj)

2
+ (yi − yj)

2

+ (zi − zj)
2
− (ri + rj)

2
]
.

The function is an Euclidean measure of the distance between
the individual boids, and will appear in the denominator of an
appropriate term in the candidate Lyapunov-like function.

C. Obstacle Avoidance

If a swarm encountered an obstacle in its path, how would
it behave? Nature provides instances of the resultant behaviors
– a flock of bird may split and then rejoin [11]; a swarm of
zooplankton Daphnia magna may swirl about a marker [12],
[13]; a bacterial swarm may increase its density in the presence
of antibiotics [14], to name a few.

We now inject a set of solid objects fixed within the
boundaries of the workspace and define an obstacle space for
the stationary solid object. Since these objects can be of any
shape (regular or irregular), we adopt the methodology given
in [15], whereby the solid objects have been represented as
simpler fixed-shaped objects such as a circle, a polygon or a
convex hull [8], [5], to ensure that the entire body of an object
is entirely within its obstacle space.

It can be verified geometrically that the most simplest
fixed-shaped object in the Euclidean plane is a disk [8].
It is also a convenient form to use if we are using the
Lyapunov-based Control Scheme to design controls [8].
Hence, we shall consider disk-shaped in a three-dimensional
environment, simply spherical-shaped obstacles.

Other types of obstacles include rod-shaped obstacles,
elliptic-shaped obstacles and moving obstacles such as
blindman [8]. In this paper, we shall confine ourselves to
spherical-shaped obstacles only to illustrates the effectiveness
of the velocity controllers.

Let there be m ∈ N fixed obstacles within the boudary of
the workspace. We have the following definition:
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Definition 2: The kth spherical-shaped obstacle is centered
at (ok1, ok2, ok3), k = 1, · · · ,m, with radii rok > 0. Precisely,
the kth disk-shaped obstacle is the set

ok :=
{
(z1, z2, , z3) ∈ R

3 : (z1 − ok1)
2

+(z2 − ok2)
2 + (z3 − ok3)

2 ≤ r2
ok

}
.

For the avoidance of these fixed obstacles, we consider the
following obstacle avoidance function:

Wik(x) :=
1

2

[
(xi − ok1)

2
+ (yi − ok2)

2

+ (zi − ok3)
2
− (ri + rok)2

]
,

for i = 1, · · · , n and k = 1, · · · ,m. The function Wik(x) is
a measurement of the distance between the ith boid and kth
obstacle ok.

IV. DESIGN OF THE VELOCITY CONTROLLERS

The nonlinear control laws for system (1) will be designed
using the LbCS. In parallel, the control scheme will utilize
Theorem 1 to provide the mathematical proof of the practical
stability pertaining to system (1).

A. Lyapunov-like Function

AS per the LbCS, we combine all the attractive and
the repulsive potential field functions designed in the
previous sections and introduce tuning parameters (or control
parameters) . With tuning parameter γi > 0, βij > 0 and
ωik > 0 i, j, k ∈ N, we define a Lyapunov-like function for
system (1) as

Vi(x) = Li +

m∑
k=1

ωikRi(x)

Wik(x)

= γiRi(x) +
n∑

j=1,
j �=i

βijRi(x)

Qij(x)
+

m∑
k=1

ωikRi(x)

Wik(x)
,

so that our new Lyapunov-like function for system (2)
becomes

V (x) :=
n∑

i=1

Vi(xi),

which is clearly continuous and locally positive definite on the
domain

E(V ) := x ∈ R
2n :

n∑
i=1

n∑
j=1,
j �=i

Qij(x) > 0

and
n∑

i=1

m∑
k=1

Wik(x) > 0,

noting that x∗ /∈ E(V ).
Assume next that the ratios are added appropriately to the

Lyapunov-like function. Then any increase in a ratio cannot
be unbounded because the existence of the Lyapunov-like

function over an appropriate domain implies the boundedness
of the state trajectories over the domain corresponding to any
bounded initial condition within the domain. This means that
the artificial potential field generated by V (x) will not allow
the swarms to get too close or collide with the obstacles. Note
that any increase in the above ratios does not translate to an
increase in V ≡ V (t), simply because V , by its nature, is
non-increasing in time t ≥ 0 and any increase in one of the
ratios gives a smaller or the same value of V at time t compared
to all previous values of V .

As such, the essence of obstacle avoidance capability in the
LbCS lies, therefore, in the creation of obstacle avoidance
functions that will induce an increase or decrease in the
instantaneous rate of change of the tentative Lyapunov-like
function. The reader is referred to [8] for a detailed account of
the effects of the obstacle avoidance functions and the resulting
repulsive potential field functions.

B. Nonlinear Velocity Controllers

The time-derivative of V along every solution of system (2)
is the dot product of the gradient of V , given by,

∇V =

(
∂V

∂x1
,
∂V

∂y1
,
∂V

∂z1
, · · · ,

∂V

∂xn

,
∂V

∂yn

,
∂V

∂zn

)
,

and the time-derivative of the state vector x =
(x1, y1, z1, . . . , xn, yn, zn). That is,

V̇ (x) = ∇V (x) • ẋ

=

n∑
i=1

⎛
⎜⎜⎝γiṘi(x) +

n∑
j=1,
j �=i

βij

Qij(x)
Ṙi(x)

−

n∑
j=1,
j �=i

βijRi(x)

Q2
ij(x)

Q̇ij(x)

+
m∑

k=1

ωik

Wik(x)
Ṙi(x)

−

m∑
k=1

ωikRi(x)

W 2
ik(x)

Ẇik(x)

⎞
⎟⎟⎠ .

Let there be real numbers μi > 0, νi > 0 and ηi > 0 such
that

vi = −μi

∂V

∂xi

, wi = −νi

∂V

∂yi

and ui = −ηi

∂V

∂zi

.

For the ith individual, system (1) therefore becomes

x′
i(t) = vi(t) = vi(x(t)) = −μi

∂V

∂xi

,

y′
i(t) = wi(t) = wi(x(t)) = −νi

∂V

∂yi

,

z′i(t) = ui(t) = ui(x(t)) = −ηi

∂V

∂zi

,

xi0 = xi(t0), yi0 = yi(t0), zi0 = zi(t0), t0 ≥ 0,

(3)
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where

∂V

∂xi

=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

xi −
1

n

n∑
k=1

xk

)

− 2
n∑

j=1,
j �=i

βijRi(x)

Q2
ij(x)

(xi − xj)

−
m∑

k=1

ωikRi(x)

W 2
ik(x)

(xi − ok1),

and

∂V

∂yi

=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

yi −
1

n

n∑
k=1

yk

)

− 2

n∑
j=1,
j �=i

βijRi(x)

Q2
ij(x)

(yi − yj)

−

m∑
k=1

ωikRi(x)

W 2
ik(x)

(yi − ok2),

and

∂V

∂zi

=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

zi −
1

n

n∑
k=1

zk

)

− 2

n∑
j=1,
j �=i

βijRi(x)

Q2
ij(x)

(zi − zj)

−
m∑

k=1

ωikRi(x)

W 2
ik(x)

(zi − ok3).

Then system (2) becomes the new gradient system

ẋ = G(x) = −H (∇V (x)), x0 := x(t0), t0 ≥ 0, (4)

It is clear that G ∈ C[E(V ), R3n].

V. PRACTICAL STABILITY ANALYSIS

We shall prove the practical stability of system (4) using the
method by Lakshmikantham, Leela and Martynyuk [10].

Theorem 2: System (4) is uniformly practically stable.
Proof. Since

V̇ (x(t)) ≤ 0,

we have

0 ≤ V (x(t)) ≤ V (x(t0)) ∀ t ≥ t0 ≥ 0. (5)

Accordingly, for comparative analysis, it is sufficient to
consider the practical stability of the scalar differential
equation

h′(t) = 0, h(t0) =: h0, t0 ≥ 0. (6)

The solution is
h(t; t0, h0) = h0,

so that relative to every point h∗ ∈ R, we have

h(t; t0, h0 − h∗) = h0 − h∗,

so that for any given number P0 > 0,

|h(t; t0, h0 − h∗)| ≤ |h0 − h∗| + P0.

We shall next show that by applying Theorem 1, we can
simultaneously derive the explicit form of P0 > 0, with which
it is easy to see that (S2) holds for equation (6) if

A = A(λ) := λ + P0.

To apply Theorem 1, we restrict our domain to D(L) over
which we see that V ∈ C[D(V ), R+], and note that V is
locally Lipschitzian in D(V ) since dV/dt ≤ 0 in D(V ).
Re-defining S(ρ) as S(ρ) = {x ∈ D(V ) : ‖x − x∗‖ < ρ},
we get

S(A) = {x ∈ D(V ) : ‖x − x∗‖ < λ + P0}.

Recalling that γi > 0, i ∈ N, we let

γmin := min
i∈N

γi and γmax := max
i∈N

γi.

Further, let

b1(‖x − x∗‖) :=
1

2
γmin‖x − x∗‖2

and

b2(‖x − x∗‖) :=
1

2
γmax [‖x − x∗‖ + V (x0)]

2
,

noting that b1, b2 ∈ K. Then assuming P0 > 0 we easily see
that with (5) we have

b1(‖x − x∗‖) ≤ V (x) ≤ b2(‖x − x∗‖) for x ∈ S(A),

since
n∑

i=1

Ri(x) =
1

2
‖x − x∗‖2.

Indeed, the inequality b2(λ) < b1(A) yields

1

2
γmax [λ + V (x0)]

2
<

1

2
γmin[λ + P0]

2,

which holds if we choose

P0 >

[(√
γmax

γmin
− 1

)
+

√
γmax

γmin
L(x0)

]
.

Since γmax/γmin ≥ 1 for any γmax, γmin > 0, and because
of (5), it is clear that P0 exists and P0 > 0. Thus, with q(t, z) ≡
0, we conclude the proof of Theorem 2.

VI. COMPUTER SIMULATIONS

To show the effectiveness of the control scheme, computer
simulations were done using "Mathematica Software" for the
swarm model.
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A. Scenario 1: A Spiral-Like Behavior

We consider a situation where the swarm converges to
a cylindrical obstacle, avoiding it and exhibit a spiral-like
behavior. This could be modeled as a flock of boids moving
in a spiral-like cruise formation. We consider 20 individuals,
each with a bin size 20, initially randomly placed into the
workspace. There are 20 spherical obstacles of radius 100
placed on top of each other to derive a cylindrical-type of
obstacle. Fig. 1 shows the swarm (in red) moving about a
field of cylindrical-type obstacles.

B. Scenario 2: A Spiral-Like Behavior

We consider a situation where the swarm converges and
exhibit a spiral-like behavior. We consider 20 individuals,
each with a bin size 20, initially randomly placed into the
workspace. There are 50 spherical obstacles of radius 100
placed on top of each other to derive a cylindrical-type of
obstacle. Fig. 2 shows the swarm (in red) moving about a
field of cylindrical-type obstacles. The cohesion parameter
plays a big role in inducing this particular emergent behavior
in motion planning and control.

VII. CONCLUSION

Our proposed model is essentially a distributed control
system wherein each individual has its own controller that
controls its position and instantaneous velocities. In this
paper, we have presented a set of distributed continuous
time-invariant velocity control laws that results in the
emergent swarm behaviors while avoiding obstacles and
collisions in a constrained environment. The generalized
controllers, extracted from the Lyapunov-based control
scheme (LbCS), enabled collision free trajectories of the
swarm within a constrained environment, whilst satisfying the
intimately couple holonomic constraints of the swarm, and
the kinodynamic constraints associated with the system. The
effectiveness of the proposed control laws was demonstrated
via computer simulations of different emerging behaviors.

Future work will attempt to extend the results of this paper
and focus on the behavior of a swarm with specific formations
in tunnels.
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