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Observers Design for Systems Modelled by
Bond Graphs with Multivariable Monotone
Nonlinearities

Gilberto Gonzalez-A, Gerardo Jaimes-A

Abstract—A methodology to design a nonlinear observer in a In [14] presents a new method using bond graph

bond graph approach is proposed. The class of memliobserver
with multivariable nonlinearities is considered.juxction structure
of the bond graph observer is proposed. The praposthodology
to an electrical transformer and a DC motor inabgdihe nonlinear
saturation is applied. Nonlinear observers forttaasformer and DC
motor based on multivariable circle criterion ire tbhysical domain
are proposed. In order to show the saturation wffemn the
transformer and DC motor, simulation results artaioled. Finally,
the paper describes that convergence of the essntat the true
states is achieved.

Keywords—Bond graph, nonlinear observer,

transformer, nonlinear saturation

|. INTRODUCTION

OND graph methodology provides a formal and
systematic language for modeling dynamic systems.
incorporates physical assumptions and issues madet a

system models in an explicit and precise way. lacpical
engineering, bond graphs are typically used to lgelperate
the differential or the state equations of systéonsstandard
numerical simulation. However, they can also beduf®
various forms of qualitative reasoning which made
reference to system differential equations at all.

Hence, the bond graph approach has been develope

recent years as a powerful tool for modeling dymani
systems. It essentially focusses on the exchangenefgy
between the system and its enviroment and betwifemeaht

elements within the system. It is this energy erdeathat
determines the dynamics of any system.

The bond graph method is acknowledged to be highited
for dynamic modeling because of the following reesda) the
derivation of system equations can be algorithmiz@y)
nonlinear elements are easily modeled.

On the other hand, the principle of observabilitiuitively
establishes the possibility to rebuilt the statealdes from the
measured outputs and given
conditions, the observation problem consists ikisgea state
estimation by means of an auxiliary dynamic systehg
observer [4].
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electrical

inputs. With obsenmbili

methodology to derive information on  structural
controllability/observability properties of a syste

Also, some papers have been published applying bond
graph to construct an observer. In [5] propose®rrol in
bond graph using state estimated feedback for MIMKD
systems. In [6] a bond graph approach to built ceduorder
observers for LTI systems is described. This apgramses the
bicausality concept to simplify the constructiondathe
calculation of the observer. A bond graph represent of
model-based control, which allows the design oftiilers in
the physical domain is described in [7].

In other wise many papers have been published
observers, for example [8] gives an approach tonest the
tate of a nonlinear system from the point of viel
qifferential algebra. However, in [9] and [10] ghily
convergent observers are designed for a classstérag with
multivariable nonlinearities. Also, most of the siig
nonlinear observer designs restrict the systemetdinear in
the unmeasured states.

Thus, the main contribution of this paper is toigesan
observer in a bond graph approach for systems with
multivariable monotone nonlinearities. In this papebond

on

0.griaph model of a transformer with two windings rsgosed.

Also, a basic electromagnetic model for the magiregi
branch of a transformer with two windings in theygibal
domain is described. This magnetizing branch ctmsi$ a
resistor and inductance. However, in order to ohice the
magnetic saturation a nonlinear function is used.

According with transformers, in [11] a magnetic cciit
model of power transformer which takes into accothe
nonlinear hysteresis phenomenon is analyzed. Hawehis
paper uses a special nonlinear function to intredte
hysteresis. In [13] a bond graph model of a tramséw based
on a nonlinear conductive magnetic circuit is diesct. Here,
the state space nonlinear magnetic model has tknbemn.
Also, the nonlinear function to armature inductantea DC
motor is applied. Then, an observer for the DC madso
designed.

Section Il gives some basic elements of the mogdeiin
bond graph. Section Ill describes the observerggdesr a
class of nonlinear system with multivariable noeérities. A
nonlinear observer in the physical domain is preskrin
section IV. A bond graph model of a transformerhwiitvo
windings considering the nonlinear core is propdseskction
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V. In this section, nonlinear observer in the pbgktdomain of where

the transformer is presented. Section VI, describesond A = (S, +S.MS,)F (6)

graph of a DC motor and the bond graph observerdagosed. B, =S, +S,MS %)
Finally, section VII gives the conclusions. p i3 CA

Cp = (%1 + S32Msz1) F (8)

II.M ODELING IN BOND GRAPH D, = S, + S,MS,, 9)

The bond graph methodology allows to model a syste@ peing
simple and direct manner. Using fields and juncstmctures, M :(I -Ls, )-1 L (10)
one may conveniently study systems containing cerpl ) T2

multiport components using bond graphs. In fachdbgraphs 't 1S very common in electrical power systems t@ use
with fields prove to be a most effective way to dienthe electrical current as state variable of this martaging the

modeling of complex multiport systems [2]. derivative of (1) and (4), we have
Consider the following scheme of a multiport LTIs@m 2(t)= Az(t)+B,u(t) (11)
which includes the key vectors of Fig. 1 [2], [14]. yZSPz(t)+ D,u (t) (12)
Source field where o
(MS,, MS¢) A =FAF™ (13)
u B,=FB, (14)
f’;izzgge x J{Z)"Cfm% ;WGC\I(H)W D Dijfi{;;nan C7p =C,F -1 (15)
@ == — D, [ & Next section describes the design of an observesystems
y with multivariable monotone nonlinearities.
Detector
I:I(D) l1. AN ONLINEAR OBSERVER

Fig. 1 Key vectors of a bond graph This design represents the observer error systertheas

. feedback interconnection of a linear system andtades
In Fig. 1, (Mse M) (C,I). (R) and (D) denote the dependent sector nonlinearity [9].

source, the energy storage, the energy dissipaiuwh the Firstly, this observer uses the multivariable nogdirities
detector fields, and0,1,TF GY) the junction structure with y(+):0' -~ O' which satisfy a multivariable analog of the

transformersyF, and gyratorsgy . monotonicity property:
The statexOO" is composed of energy variablgd and g

. , P gy variablgs and 4 VL) s onunn! (16)
associated with; and ¢ elements in integral causality ou

assignmentu0° denotes the plant inpuy 109, the plant  \ith this property, the state nonlinearity thaises in the
output, zOO" the co-energy vector, antb por and  observer error system a multivariable sector céaitFor our
D 00" are a mixture ofe and § showing the energy OPserver design, we consider the plant

out

exchanges between the dissipation field and thetipm x(t) = Ax(t) +Gy(Hx(t)) + BLu(t) (17)
structure. S y(t) =Cx(t)
The relations of the storage and dissipation féetg] 0 )
2(t) = Fx(t) ) where x(O0O" is the state,yJ0? is the measured output,
_ @ ud0OP is the control input, and the multivariable noeknity
_ _D"”‘ (t)_ LD, (t) y(+):0" - O' satisfies (16).
The relat|0n§ of the junction structure are [2#][1 With this assumption, our observer has the sanmm fas in
X(t) S, S, S; Z(t) [16]:
D, (t) =Sy S, Sul| Do (t) @) x=AX(t)+ L(C)A((t)_ y(t)) + (18)
Y(t) Sy Sy Sy u(t) Gy(H)?(t)+K(C)?(t)—y(t)))+Bpu(t)

The entries of S take values inside the set Ourtask is to determine the observer matrikegs 1™ and
{O,il,iKt ,iKg} where K, and K, are transformer and | J0™d to make the observer errog(t) = x(t) - X(t)
gyrator modules;S, and S,, are square skew-symmetricapproach zero. From (17) and (18), the dynamicsthef
matrices andS, and S,, are matrices each other negativeObS'erVer erroe(t) = x(t) - x(t) are governed by
transpose. The state equation is, &(t) = (Ap + ch)e(t) +G[V(U) ‘V(W)J (19)

x(t) = Ax(t)+Bu(t) (4)  where
y(t) =C,x(t) + Dyu(t) ©) v=Hxw=HI(1)+K(CK(1)-y(1) @O
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We begin the observer design by representing tiserabr The objective to represent the model and the obsdrv
error system (19) as the feedback interconnectfoa knear block diagrams is to obtain the complete systeterims of the
system and multivariable sector nonlinearity. Tis #nd, we junction structure matrices. This let us to knolke thange of
view y(u)—y(a)) as a function of v and S due to the observer with the purpose the ashgmains of
) . the observer.

Z=U-w= (H + KC)e, that is, a state-dependent.l.he structure of the observer is given by,

multivariable nonlinearity in z:

$(0.2)=1(0)1(0) @) AN )
Substituting (21), we rewrite the observer erratem (19) as DAin (t) | = S| Do (1) |+ (1)
e(t)=(A+LC,)e(t)+Gp(v.2) (22) (t) u(t)
2(t) :(H * KCp)e(t) The state space representation of the observer is,
To show thatg (U, z) satisfies a multivariable sector property, A A ~
= t)+B + S: 27
we make use the Mean Value Theorem [9], and rewrite X A’X( )A u() X() @7
#(v,2) as y(t)=C,x(t)+D,u(t) (28)
p(v.2)=y(v)-y(w) (23) where
) 23 ~ _[a A GA
SET A=(essis)e e
o B, =S;+SMS,, (30)
1% G =(508Mi8)F @
Thus, from property (16), being
oy, [orT 24 i=L(1-8L)"
Z¢(v.2)= I[[as} {63} l_md/lzzo (24) M=L(1-8,1) (32)

Next section proposes a two windings transformelugting
the linear and nonlinear core in the physical domaiso, a
nonlinear of the observer is designed.

Thanks to this sector property, asymptotic stabilis
guaranteed from the circle criterion if the lineystem with
input 9 =-¢(v,z) and outputZ is SPR, that is, if a matrix
P=P'" >0, and a constant >0 can be found such that [9] V. BOND GRAPH OF ATWO WINDINGS TRANSFORMER WITH
CORE

A+LC) P+P(A+LC)+¢l PG+(H+KC)
{( ) ( ) ¢ ( 0 ) }50(25) Charles P. Steinmetz (1865-1923) developed theuitirc

i
G'P+(H +KC) model that is universally used for the analysisiroh core
Thus, the observer design for system (17) consissolving transformers at power frequencies [1]. Howeves good idea

(25), whichis LMl inP=P" 20, P,L,K and¢=>0. to consider transformers first from the point oéwiof basic
Next section presents a general scheme to obtaibsarver linear circuit theory to better appreciate the 18tetz model.
in the physical domain. Consider the magnetic coupling between the primang

secondary windings of a transformer shown in FifiLZ3.
IV. AN OBSERVERBASED ON ABOND GRAPH

A direct graphical technique to obtain the obsergéra
system represented by bond graph is presenteslinttgortant
to note that the magnetizing inductance is a nealirfunction
described by (41). Thus, the proposed observemisndinear
system. The general structure of the complete sysgeshown
in Fig. 2.

Fig. 3 Magnetic coupling of a two-winding transfam

The total flux linked by each winding may be dividmto
two components: a mutual componeg,, that is common to
both windings, and a leakage flux components tin&slonly

the winding itself. In terms of these flux compotgerhe total
flux by each of the windings can be expressedgas.g, + ¢,

and g =¢,+¢, where ¢, and @), are the leakage flux

Fig. 2 Block diagram of an obsever in the physitmhain components of windings 1 and 2, respectively. Assgrthat
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N, turns of winding 1 effectively linkg, and ¢, the flux
linkage of winding 1 is defined by, = N,g = N,(@.+a,) the

leakage and mutual fluxes can be expressed in tefntise
winding currents using the magneto-motive forcemfsy and

R:Rm R:R2
11 5
7

T2 112 mge

|
T

MSe
vi

R:R1
;

1 n';i 4
Lz

permeances. So, the flux linkage of winding 1 is,
A=NINiP.+(Nj.+Ni)P where _@ and 1 l:iLm 2
' 1[ T ( = 52) m] R, = N,i, Fig. 4 Bond graph of a complete transformer
- % .
"N, + N, The key vectors of the bond graph of Fig. 4 are,
Similarly, the flux linkage of winding 2 can be egpsed as, P, |& f2
A= Nz(q2+¢m) and using mmfs and permeances for this X=|ps [ X=| €& |;z=| fg
winding, A, = Nz[Nzi 2|272+(Nj1+ Nj Q Pm]. The resulting Py & L fo (35)
flux linkage equations for the two magnetically ptad fs & g
windings, expressed in terms of the winding indnceés are, D, =| fs |; Do =| & |sU :{ }
A L,|i f €o
{ 1:| =|:L11 1z:||:'1:| (33) 11 €1
Al L Lyl the constitutive relations of the fields are,
where L, and L,, are the self-inductances of the windings, L =diag{R,R,,R} (36)
and L, andL,, are the mutual inductances between them. F = diag {1’1’1} (37)
Note that the self-inductance of the primary candbéded L, L, Ly
into two components, the primary leakage inductamngeand —and the junction structure is given by
the primary magnetizing inductancg, ,, which are defined -1 0 -1 10
by, Ly =L+l where L, = NfR1 and L = leilpm' S, = ‘SL: 0 -1 %: S=|0 1 (38)
Likewise, for winding 21L,,=L,,+L,, where L, =NZP, 0 o0 1 00
— 2;
and L, = N3i,R,. S,=5,=S5,=0

Finally, the mutual inductance is given Hy, = N,N,j P, and

L, =NNjPp, taking the ratio of | ~a  , then
A

Nl
The induced voltage in winding 1 is given by,
el=%-L di, 2& replacingl, by L, +L,, andL,i, by

dt — tdt ot
N,L.i,/ N, we

2=ml

di d(i,+(N,/N,)i
e.l:LllEl-FLml (l (d: 1) 2)'

Similarly, the induced voltage of winding 2 is wem by,
di, d(i, +(N,/N,)iy)
= 24+ —= r - .
ez L|2 dt + m2 dt
Finally, the terminal voltage of a winding is thans of the

induced voltage and the resistive drop in the wigdithe
complete equations of the two windings are,

obtain

di,
Vl - r.li]. + Lll + Lml a_lel dt (34)
V2 r2i2 aLmZ I‘|2 + I‘m2 %

dt

where g = N,/ N,-

The final concept involved in the Steinmetz transfer
model is a scheme for handling the nonlinearitthefcore and
the core losses. The Steinmetz model approachgzdhdem
of representing core excitation by first dividinginto two
parts: magnetization and core losses [1]. In otdezonsider
the core losses of a transformer a bond graph madel
presented in Fig. 4.

By substituting (36), (37) and (38) into (6) and, {he state
space representation of the transformer is,

-(R*R) -R, R,
Ly al,, Ly
(r+Ru
A=l R M R, (39)
aLlZ L|2 aL\Z
Ry R -Rn
Lm aLm Lm
7i 0 0T
6 -
0 i 0
L L

The incorporation of nonlinear effects such as retign
saturation and hysteresis is achieved in the toamsfr model

with the appropriate modification of the inductankg in the
bond graph of Fig. 4.

In Fig. 5 the saturation curve is illustrated aht turve is
approximated with the equation [15],

1 [ALmj
I, =—tan —*
m ﬁ a
where g =0.321% and 5 =0.8642.

(40)
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Fig. 5 Saturation curve of equation (40)

In other wise the magnetization inductance of thagformer

is defined by

= d/]m = aﬂ (41)
moodi, 1+p42
and substituting into (39) we have
2(t) = Az(t)+ B,u(t) + Gy(Hz(t)) (42)
where i i
-(R*R.) “R. Ru
a, al, L
43
il R “(RrR/E) R, @)
a, a, aL,
Ry R Ry
apf afa apf
Gy(Hz)=ﬁ%(zlz§ +§zzz§—z§j (44)
also
G:[O 0 ,B;Rm} (45)
a
Mo)=2Z+2 222 (46)
and
z
U:sz[l 1 _1} . (47)
a
A
therefore
a_;/+[a_;/j =2z > 00000 (48)
ov \ou

The numerical values of the parameters of the lgvagh of
Fig. 4 are |, =11.05nH, L,=11.05nH, a=0.321F

B=0.864z R =58, R =58, R =100, a=10,
R, =4KQ andy, =120sin( 377). If we introduce (40) to the

bond graph model of Fig. 4, the nonlinear phenomina
incorporated. Fig. 6 shows the saturation perfooeaan the
bond graph model of the transformer.

Magnetizing flux (Wb}
2
0

&
N

0.4

-2 4
Magnetizing current {A}

Fig. 6 Nonlinear performance of the transformeFiof 4

The primary and secondary current of the bond graptiel
of the transformer are shown in Fig. 7. Note thatgaturation
and hysteresis affects both electrical currentshenelectrical

transformer.
8

:<:6 N 2
g /\\

32/ yany

L]

-2

0.2
2 16
Zo
VANIVANVANY ANVAN
S \ /L N\ /

-0.2

0.02 0.04  time {s} 0.06 0.08 0.1
Fig. 7 Primary and secondary current of a transéomwith nonlinear

core

The observer design using bond graph allows to ktiewv
relation between the plant and the observer in asy avay.
From (48) the monotonicity property of the eleditic
transformer is satisfied. Hence, a nonlinear olesefor the
transformer can be applied. Fig. 8 shows the mndeti bond
graph of the nonlinear observer.

clorl, ol

8
r—MS 1——0 ﬁ‘TFﬁ"‘

zL 12L a SL 15
° L 1—2iiLm L
MSF—1 16 17
14

R:R1 R:Rm R:R2

19 20
MS'T 01— MGY:Ld31

Fig. 8 Observer for the transformer in the physitahain

The nonlinear section for the observer on the tgragh by
using modulated gyrator$AGY : Ld,, and MGY : Ld,, with
active bonds 37 and 38 is introduced.

In order to prove that the complete bond graph igf B
represents a system with multivariable monotone
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nonlinearities, the mathematical model is obtairiEuus, the

k(5 -\ B 5 _5\52
key vectors for the transformer is given by (35) dar the G K1(21 Zl)+ELd31(Zl ZJ)Z3+ (56)
observer are, A Vi ) -
Pss €5 f KZ(ZZ_ZZ)+;Ld32(ZZ_ZZ)Z3
X=| pss i X=| €5 |;2=] f Finally, from (18) the original observer gains are
Pas €is f (49) L, Lp -
fa ey y:{fz} L=, Ly[K=[K, K] (57)
f) - fso 6 —| 50 |. fG L31 L32
" s les| . [fa Therefore, the relations between the graphical sgainbond
f e, y= f graph and the original gains for the observer are:
39 9 53
Ly, =L, L, ; =L, L,
the constitutive relations of the elements are, g T A Lz = oo Ly Laz = Loy II:‘:
11 1 _a, . a, . —K _=
F= dlag{l_‘ ? L} (50) Lz = Lap* L d3l_EL31’ Ld32=z|-32' K - Kl ,32
1 2
L=diag{R,R,.R,.R} B ng Kd2=K2-i-
and the junction structure is Vei
[Ld, Ld, O 10 By substituting the values of the parameters of dbeplete
S,=|Ld, Ld,, 0[;S.=|0 1 system according with (17), we have,
Ld,, Ld, O 00 [ -362515.83 - 3619909.50 361990.
:_1 0 -1 0 ) A=|-3619909.50 - 36208669.68 3619909}
s,=|0 -1 —a* -1/:§,=|* 2 © (52) | 14396.75  143967.59 - 14396.
“lo 0 1 o 1O [90.49 O
& -4 =4 =34 8= o o/cet 00
S, =5,;75;,=55,=0 - 7o 1 0
From (29), (30), (50), (51) and (52) the state spac L 0 0
representatlon IS, ) H :[l 0.1 _J] G :[ 00 10752_q§
-1
_R11+Gn —a Rm+G12 Ry The linear matrix inequality LMI must be feasibl25],
L, L, L, which guarantees a strict positive real (SPR) ptypfer the
~ | -a'R, R, -a'R. (53) linear part of the observer error system, for #ystem, we
AIJ = L +G,, L 2 +Gy, L obtain
2 L 2 . : 404427 - 404427 - 0.00058
Roplm @R, b ZRy P=| -404427 404427 - 0.00083
L b Lo L L Lo —0.000566 - 0.000836 0.00009:
-104334.8 - 1035963. T
Lo S G O L=| -104334.8 - 1035963.5 K = 209
B, =10 1A= G, -G, O - ' 7079
00 L. -L —-2306330.8 - 229030467
p31 p32 0 .
L., L, with v =100.
where “R+R.: -R G =Ld /L The performance of the electrical transformer witte
R”_ R*Ry R 2+I_?L+R“ woomm L‘l_ observer is shown in Fig. 9 and 10. Fig. 9 illugtsathe
Gz =Ldy,/ Ly Gy =Ldy/ Lz Gy =Ldy/ Ly primary current on the transformef, and on the observer,
Lpy, =(Ldy + Ky L) s Loz = (Luaz+ Ky k) fo
In order to verify that (53) is the same obserespect (42). 10 -
By substituting (41) into the third line oﬂp from (53) we z, cooReR
have, \
5 _Rifs s +BR. 52 54 °* /RN
23=—n(z+a2 +a 22+G (54) /1
RIS A CAL A 2 4 I\
where ) R /N ~
2, - Z2,-z /
:(Ld31+Kd1Lm)(ZlL—Zl)+(Ld32+Kdsz)M@s) 0 ) i / N
and using one more time (41) into (55) we obtain, 2
-0.01 0.01 0.02 e 1} 0-03 0.04 0.05
Fig. 9 Primary currents on the transformer andhenabserver
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The secondary currents on the transforn@rand on the

observer, f_, are shown in Fig. 10.
0.2

A 2N s SN

N L/ \ Vs \ ’ \

7 ; 1
N N N
‘

_53=f%

. Current {A}

-3
S

-0.4

-0.6

-0.8
-0.01 0.01

0.02time {s} 0.03 0.04 0.05
Fig. 10 Secondary currents on the transformer anith® observer

Therefore, the convergency of the estimates reshedrue
states of the electrical transformer including moedr
saturation and hysteresis is guaranteed.

VI. BoND GRAPH OF ADC MOTOR

Of all electric machines the direct (DC) machingéshaps
the most straightforward to analyze. Although aomays
deviation of the voltage and torque equation issfibs it is
rather lengthy and little is gained since thesati@hships may
be deduced. The armature coils revolve in a magriiid
established by current flowing in the field windjnghich is
shown in Fig. 11. We know that voltage is inducedhiese
coils by virtue of this rotation and we can writee tfield and

armature  voltage equations as, —,; ., 9+ and
f fif f
dt

v, =wL,i, +raiaLa% where |, and L, are the self
dt
inductances of the field and armature windingspeetvely.

The rotor speed is denoted ag and L, is the mutual

inductance between the field and the rotating anreatoils.
The expression for torque 1§

dW

rotor speed are related tQ/ J—+ fw+T, where J is the

inertia of the rotor and

associated with the mechanical rotational system thef

machine and mechanical load.
Ra La

—

I
Va b

L
Fig. 11 Scheme of a DC motor with an independecit@ion

The bond graph of the DC motor is shown in Fig. 12.

R:Ra R:b
2] o]
Msevi ——1-2 —gy—2 471
3 "7
I:La I:J

Fig. 12 Bond graph of the DC motor

=L,i,i, and the torque and

in some cases the condecte
mechanical load, the constarft is a damping coefficient

The key vectors of the bond graph are

R e

the constitutive relations are

L,'J
L =diag{R,,b} (59)
and the junction structure is

o -n] . J1
st Tl
S,=-Sp,=-1;S,=[0 1

S, =58,,=5;,=55,=0
The state equation of the DC motor is

(60)

_Ra -n

A= A =H'C :{0 1}-0 =0
n -b|""® [0 JI'P
L J

a

Now, if we consider a magnetic saturation of th@uctance,

L,, according to the model given in (40), the stajaation
with saturation is

RN “RE
~_|laB 3 a
A = b ;Gy(Hz) = E
apf J a
the vectorGy(Hx) can be decomposed as
2o
oot 3% T T
o ZL|L-38x O 0 1| %
3
then M"l and , - py=| + 0| %
)=l 55 0 1)[x
ot

the monotonicity property applied to this exampliees,
00(x,%,) H
0(x.x,) |0
then (16) is satisfied.

Thus, an nonlinear observer is designed and is showrig.
13.

R: Ra R:b

MSe:v1 ﬁmﬁmﬁevﬁm—»msnﬁ

0—22
2?
GY%M
R: Ra 1
23
1 30 GY 1—}Msf

ILa IJ

Fig. 13 Observer of the DC motor
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The key vectos for the observer are,

;2:|:p29:| |:929:|, {29:|;|jin:|:fzs:|;|§m |:623:| u=¢g
Pss €5 fa fy € =fy

the junction structure for the observer is

[0 n-L] [0 La [t
P o RS Y

én:_st = Iz;ézz :éz3 =0
From (27), (29), (30), (58), (59) and (61), the observer state
equationis
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'f we consider the magnetic saturation given by (41) then
ﬁxl-fw“(xz %)+ R‘ﬁ (wkl(xz Xz))
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The numerical parameters of the DC motor are: g =10,
n=3, R=05 f=15 a=1, g=1, J=15, H=I,
G=%1|2~ P=diag{056,033 . L=[1 1 ;k=[0 -1.33 .

Hence, simulation results of each state variable are shown in
Fig. 14 and 15.
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Fig. 14 State and observer of X
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Fig. 15 State and observer of X,

VIl. CONCLUSIONS

A bond graph approach to design observers with
multivariable nonlinearities is proposed. Hence, models of a
power transformer and a DC motor incorporating the nonlinear
saturation in the physical domain is presented. In order to
prove the results, the graphical simulations are shown. The
convergence of the estimates and the states of the transformer
by using simulation is described.
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