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Abstract—Monitoring of ecological systems is one of the major 

issues in ecosystem research. The concepts and methodology of 
mathematical systems theory provide useful tools to face this 
problem. In many cases, state monitoring of a complex ecological 
system consists in observation (measurement) of certain state 
variables, and the whole state process has to be determined from the 
observed data. The solution proposed in the paper is the design of an 
observer system, which makes it possible to approximately recover 
the state process from its partial observation. The method is 
illustrated with a trophic chain of resource – producer – primary 
consumer type and a numerical example is also presented. 
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I. INTRODUCTION 
HE problem of sustainability of economic and social 
development in a broader sense also involves 

conservation aspects of ecology. The problem of state 
monitoring of population systems, even under natural 
conditions, is an important issue in conservation ecology. 
Nearly natural populations are often exposed to a strong 
human intervention, e.g. by wildlife management, fisheries or 
environmental pollution. This means that human activity may 
improve or break the equilibrium of the population system in 
question, it may also increase or decrease the genetic 
variability of the given populations. One of the main tasks of 
conservation biology is to preserve the diversity of population 
systems and genetic variability of certain populations. These 
problems make it necessary to extend the traditional approach 
of theoretical biology focusing only on a biological object, to 
the study of the system “biological object – man”. This, in 
dynamic situation, i.e. in case of a long-term human 
intervention, typically requires the approach of mathematical 
systems theory (in frequently used terms, state-space 
modelling). On the state-space approach to modelling in 
population biology, [1] is an early reference, see also [2]. 
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 Mathematical systems theory offers a methodology to 
answer this question. This discipline had been developed by 
the 1960s to solve variety of problems faced in engineering 
and industry. A basic reference is [3], see also [4]. A recent 
reference is [5]. While by now, mathematical systems theory 
became quite familiar to system engineers, observability and 
controllability analysis of dynamic models in population 
biology is relatively new. In many cases, state monitoring of a 
complex ecological system consists in observation 
(measurement) of certain state variables, and the whole state 
process has to be determined from the observed data. In a 
more general setting, the state process is a system of 
differential equations, and instead of its concrete solution only 
a transform (in particular a subset of the components) of it is 
known (measured). The considered system is called (locally) 
observable, if from the observation, the underlying state 
process can be uniquely recovered (near an equilibrium state). 
Based on the a sufficient condition for nonlinear observation 
systems published in [6], for different coexisting Lotka-
Volterra type population systems, local observability results 
have been obtained in part by some of the coauthors of the of 
the present paper in [7], [8] and [9]. Later on, in addition to 
these theoretical results, for Lotka-Volterra systems even a so-
called observer systems has been constructed that made it 
possible to numerically recover the state process from the 
observation data, see [8], [9], [10], [11] and [12]. 
 In the present paper ecological systems of non Lotka-
Volterra type will be considered. Until now in [13], only 
observability results have been obtained for systems of type 
resource – producer – primary consumer. In Section II, from 
[13], the model setup and basic conditions for the existence of 
an equilibrium of the system are shortly recalled. Section III is 
the main body of the paper. First the theoretical background of 
the observer design is set up. Then the construction of the 
observer and the asymptotic recovery of the state process is 
illustrated with a numerical example. Section 4 is devoted to 
the discussion of the results. 

II. DESCRIPTION OF THE DYNAMIC MODEL 
In order to illustrate the application of the methodology of 

mathematical systems theory, a relatively simple food web, a 
trophic chain has been chosen, that in addition to populations 
also involves a resource (energy or nutrient). In the following, 
the model setup is shortly recalled from [13], see also [14] and 
[15]. For further details on trophic chains (and genaral food 
webs) see e.g. [16] and [17].   
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 The considered model describes how a resource moves 

through a trophic chain. A typical terrestrial trophic chains 

consists in the following components: 

 resource, the 0th trophic level (solar energy or inorganic 

nutrient), 

which is incorporated by  

 a plant population, the 1st trophic level (producer),  

which transfers it to  

 a herbivorous animal population, the 2nd trophic level 

(primary consumer). 

Let it be noted that, in a longer trophic chain, the herbivores 

can be consumed by a predator population the 3rd trophic level 

(secondary consumer), which can be followed by top predator 

population (tertiary consumers). In the present paper, for 

technical simplicity only trophic chains of the type resource – 

producer – primary consumer will be studied. According to 

the possible types of 0th level (energy or nutrient), two types 

of trophic chains will be considered: open chains (without 

recycling) and closed chains (with recycling). At the 0th 

trophic level, resource is the common term for energy and 

nutrient. 

 Let 0x  denote of the time-varying quantity of resource 

present in the system, 1x  and 2x , in function of time, the 

biomass (or density) of the producer (species 1) and the 

primary consumer (species 2), respectively. Let Q  be the 

resource supply considered constant in the model. Let 00 xα  

be the velocity at which a unit of biomass of species 1 

consumes the resource, and it is assumed that this 

consumption increases the biomass of this species at rate 1k . 

A unit of biomass of species 2 consumes the biomass of 

species 1 at velocity 1α 1x , converting it into biomass at rate 

2k . Both the plant and the animal populations are supposed to 

decrease exponentially in the absence of the resource and the 

other species, with respective rates of decrease (Malthus 

parameters) 1m  and 2m .  

Finally, in a closed system the dead individuals of species 1 

and 2 are recycled into nutrient at respective rates 10 1 << β  

and 10 2 << β , while for an open system (where there is no 

natural recycling) ,01 =β  02 =β  holds. Then with model 

parameters  

0,,,, 2110 >mmQ αα ;  [,1,0[,  [;1,0], 2121 ∈∈ ββkk  

for the trophic chain the following dynamic model can be set 
up: 

2221111000 xmxmxxQx ββα ++−=        (2.0) 

)( 21001111 xxkmxx αα −+−=          (2.1) 

)( 112222 xkmxx α+−= .                                  (2.2) 
 

Let  function f  be defined in terms of the right-hand side 
of this system: 

33  : RR →f , 
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 In [13], a necessary and sufficient condition were 
found for the existence of a non-trivial ecological equilibrium 

∗x of dynamic system (2.0)-(2.2), where all components are 
present: system (2.0)-(2.2) has a unique equilibrium 

0),,( *
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0 >=∗ xxxx  if and only if the resource supply is 

high enough, i.e. 
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Throughout the paper condition (2.3) will be supposed. 
  

III. CONCEPT OF OBSERVABILITY. CONSTRUCTION OF AN 
OBSERVER SYSTEM FOR A TROPHIC CHAIN 

Given positive integers m, n, and continuously differentiable 
functions 

mnnn hf RRRR →→ :,: , 
 the following observation system is considered 
            )(xfx =                                      (3.1) 
            )(xhy =  ,                      (3.2) 
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where y  is called the observed function. It is supposed that 
nx R∈*  is an equilibrium with zero observation: 

0)( * =xf  and 0)( * =xh . 
 
Definition 3.1. Observation system (3.1)-(3.2) is called 
locally observable near equilibrium *x , over a given time 
interval ],0[ T , if there exists 0>ε , such that for any two 
different solutions x  and x  of system (1) with 

ε<− |)(| *xtx  and )],0[(|)(| * Ttxtx ∈<− ε , the 
observed functions xh  and xh  are different. (  denotes 
the composition of functions. For brevity, the reference to 

],0[ T  will be suppressed). 
 For the formulation of a sufficient condition for local 
observability of the observation system (3.1)-(3.2), the latter is 
linearized in terms of the corresponding Jacobians 

)(: *xfA ′=   and  )(: *xhC ′= . 
Theorem 3.2. (Lee and Markus, 1971) Suppose that rank 
condition 

nCACACACrank Tn =− ]|...|||[ 12                (3.3) 
holds. Then the observation system (3.1)-(3.2) is locally 
observable near equilibrium *x . 
Now, the construction of an observer system for system (3.1)-
(3.2) will be based on [18].  
Definition 3.3.  Given a continuously differentiable 
function nmnG RRR →×: , system  
     ),( yzGz =                                                            (3.4) 

is called a local asymptotic (respectively, exponential) 
observer for observation system (3.1)-(3.2) if the composite 
system (3.1)-(3.2), (3.4) satisfies the following two 
requirements.  

i)  If )0()0( zx = , then )()( tztx = , for all 0≥t .  

ii) There exists a neighbourhood V  of the equilibrium *x of 
nR  such that for all Vzx ∈)0(),0( , the estimation error 

)()( txtz −  decays asymptotically (respectively, 
exponentially) to zero. 
Theorem 3.4. (Sundarapandian, 2002) Suppose that *x  is a 
Lyapunov stable equilibrium of system (3.1), and that there 
exists a matrix H  such  that matrix A-HC is Hurwitz (i.e. all 
its eigenvalues have negative real parts). Then dynamic 
system defined by 

)]([)( zhyKzfz −+=                             (3.5)           
     

is a local exponential observer for observation system (3.1)-(3.2). 
For the case of observation of a single state variable, local 

observability of system (2.0)-(2.2) was proved in [13]. 
However, this only means that from the observation of one 
component, in principle, the whole state process can be 
uniquely recovered near the equilibrium. Below, by the 
construction of the observer (or state estimator) system, the 

original trajectory will be also numerically estimated. For the 
application of Theorem 3.4, first, under condition (2.3), the 
system matrix of the linearization of dynamic system (2.0)-
(2.2) around the unique positive equilibrium *x  is calculated: 
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It is supposed that from the state vector x , only the time-
varying quantity 0x  of the resource of system (2.0)-(2.2) is 
observed, i.e. the observation function is 
 

                           .:)( *
00 xxxh −=                                (3.6)                       

(For technical reason, instead of 0x , its deviation from its 

equilibrium value *
0x  is supposed to be observed.) Hence the 

linearization of the observation function is  
 

)0,0,1()(: * =′= xhC . 
 
 For the construction the local observer for the considered 
observation system, a matrix ),,( 321 hhhcolH =  is 
needed such that matrix A-HC is Hurwitz, i.e., all its 
eigenvalues have negative real parts. According to the 
Hurwitz criterion (see e.g. Chen et al. (2004)), in terms of the 
normed characteristic polynomial of  A-HC, the following 
necessary and sufficient condition holds: 
 

.0,,
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⇔+++= λλλλ
           (3.7) 

 
For the case when the resource supply is high enough, this 
matrix H can be determined from the following theorem: 

Theorem 3.5. Suppose that inequality  
211
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is chosen such that },max{
22

*
00

*
22

*
11

1 k
x

xm
xmh

β
α

> . Then 

dynamic system defined by 
 

)]([)( zhyHzfz −+=  
is a local exponential observer for system (2.0)-(2.2) with the 
observation h  defined in (3.6). 
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 Proof. It is sufficient to show that under the conditions of 

the theorem, *x  is a Lyapunov stable equilibrium of system 

(3.1), and matrix A-HC is Hurwitz. Then the proof can be 

concluded applying Theorem 3.4.  

 First, from 
211

21

kk
mmQ

α
>  inequality 2QQ >  also follows, 

which on the one hand, as quoted at the end of Section 2, 

implies the existence of a unique positive equilibrium. On the 

other hand, in [13], [14] it was proved, that both in open 

systems (with ,01 =β  02 =β ) and in partially or totally 

closed systems (at least one of inequalities 10 1 << β  and 

10 2 << β  holds) condition 2QQ >  also implies 

(asymptotic) stability of the equilibrium.  

 From (2.0)-(2.2) the coordinates of the positive equilibrium 

*x are 

2120
2

20

212
2

211
1

*
0

mk
k
m

mm
k

mmQ
x

βαα

ββα

+−

+−−
= , 

            
12

2*
1 αk

mx = , 

                                                 

2120
2

20

12

21011

12

210
10

*
2

mk
k
m

k
mmk

k
mmQk

x
βαα

α
αβ

α
αα

+−

−−+−
= . 

 
 
Now it will be proved that for the coefficients of the normed 
characteristic polynomial of  A-HC conditions (3.7) hold. To 
cut short the rather tedious calculations, the following 

statements can be checked: Hypothesis 
211
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>  and 

[1,0[,  [;1,0], 2121 ∈∈ ββkk  implies 
1

21

α
mmQ >  and also 
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00 >− mx βα , and the latter is sufficient for 01 >a  

and also used in the proof of 0012 >−⋅ aaa . On the other 
hand,  
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From 
12

2*
1 αk

m
x =  and [1,0[  [;1,0], 221 ∈∈ βkk  in 

inequality 0*
22212

*
2

*
121 >− xmkkxxk βα  can be derived, 

which implies 00 >a . Finally, inequalities 0,, *
101 >xah  

directly imply 02 >a . Summing up, all inequalities 
conditions (3.7) hold for )(λp . Therefore matrix A-HC is 
Hurwitz, and the application of Theorem 3.4 concludes the 
proof.   
 
Example 3.6. For a numerical example, the following set of 
parameters is considered: 
 

;2.0:;1.0:;3.0:;10: 110 ==== βααQ
.5.0:;5.0:;4.0:;1.0:;3.0: 21212 ===== kkmmβ   

 
In this case the system (2.0)-(2.2) has a positive equilibrium 

)78.5,8,52.4(* =x , and with matrix 
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conditions of Theorem 3.5 are satisfied. Therefore, the 
following must be an observer system:  
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Indeed, let )2,7,3(:)0( =x  be the initial value for system 
(2.0)-(2.2), near the equilibrium, and similarly, 

)1,9.7,3.1(:(0) =z  another nearby initial value for the 
observer system (3.8).  Figure 1 shows that the corresponding 
solution z  tends to the solution x  of the original system, 
providing a rather good asymptotic estimate of the state 
process.  
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Fig. 1 Solutions of systems (2.0)-(2.2) and (3.8) 

 

IV. DISCUSSION 
In the paper the construction of an observer system was 

applied for the state monitoring of a simple trophic chain of 
the type resource – producer – primary consumer, recovering 
the whole state process from the only observation of the 
resource. The applied methodology can also be extended to 
more complex models of food webs, involving the 
observation of certain abiotic environmental components 
and/or certain indicator species. A similar approach may be 
also useful for the monitoring of population systems in 
changing environment. (In [7] only observability of such 
ecological systems was discussed.)  
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