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compared to backward swept part, even though the magnitude 
of lift is lower, the induced drag is reduced due to elliptical lift 
distribution. From Fig. 2, it can also be seen that asymmetric 
lift distribution will produce unwanted moments forcing the 
aircraft to be very unstable. These moments include, the 
negative rolling moment which also induces negative yawing 
moment which is highly undesirable. 

 

 
Fig. 2 CL distribution over span for Mach 0.9 with different sweep 

angles 
 
This means that, to maintain symmetric lift distribution, the 

ailerons must be kept deflected throughout the flight which 
might not be practical in terms of drag, aeroelasticity and 
flutter etc.  

One of the major problems for aircrafts is when 
approaching Mach 1, after entering the transonic region (Mach 
= 0.8 to 1) the drag rises rapidly due to shock waves formation 
on the surface. Therefore the Lift-to-Drag ratio drops to very 
low value in conventional aircrafts. But it can be seen that 
Lift-to-Drag ratio could be maintained above certain value by 
increasing the oblique sweep angle as shown in Fig. 3. 

 

 
Fig. 3 Lift-to-Drag ratio curve against Mach number 

 
The Lift-to-Drag ratio has increased to 12 at Mach 0.9 for 

oblique sweep of 50˚ and 11.33 for oblique sweep of 30˚ 
compared to 7.7 for 0˚ sweep. But the increase in Lift-to-Drag 
ratio is not considerable when compared to 30˚ sweptback 
configuration which yields 11.12. The reason is the 

considerable loss of lift in forward swept wing at high sweep 
angles.  

Therefore, from the above analysis it was clear that 
sweeping wing to oblique angles reduces drag significantly 
even though lift is also compensated. The drag analysis was 
done to visualize the difference in drag for different 
configurations of wing planforms as shown in Fig. 4. 

 

 
Fig. 4 Drag coefficient at Mach 0.9 for different wing-body 

combinations 
As seen in Fig. 4, the wave drag has been reduced in all the 

swept wing planforms but the oblique swept wing with 30˚ 
sweep has 8.95% lower total drag compared to sweptback 
wing of 30˚ sweep and 40.63% lower total drag compared to 
0˚ sweep. The oblique wing with 50˚ sweep has 34.8% lower 
total drag compared to sweptback wing of 30˚ sweep, 10.17% 
lower compared to Delta wing of 65˚ sweep and 57.49% lower 
compared to 0˚ sweep. 

III. LATERAL STABILITY 
The lateral motion of the oblique wing configuration is 

unstable primarily due to the asymmetric lift produced in the 
front swept wing and back swept wing. The instability 
becomes stronger with the increase in Mach number and 
sweep angle. 

Linearized lateral equations of motion were considered for 
the analysis purpose and two situations were considered at 
Mach 0.9 with Sweep 30o and 50o. For the initial lateral 
stability analysis only the aileron input was considered. The 
aircraft model can be presented as a linearized state-space 
model [5]. 
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(5) 

 
Substituting the aerodynamic data at Mach 0.9 for sweep 

30o and 90o into the plant matrix A and input matrix B, the 
corresponding state equations were calculated. 

 

ଷ଴೚ܣ ൌ  ൦
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The pole zero plot in Fig. 5 of the state equations shows that 

the plant is marginally stable. 
 

 
Fig. 5 Eigenvalues for 30˚ and 50˚ sweep at Mach 0.9 

 
TABLE I 

EIGEN VALUES AT MACH 0.9 
Eigen Values 

Sweep 30o Sweep 50o 
െ244 െ125.7477 

േ 0.02݅ െ0.3020 
േ0 െ0.0647 

 0 

IV. CONTROLLABILITY 
The controllability matrix of the plane is given by 

 
 ࣝ ൌ ሾܤ, ,ܤܣ ܤଶܣ  ሿ (6)ܤ௡ିଵܣ …

 
where n is the rank of plant matrix A. In our case the rank of 
matrix A in both the cases is 4. 
 

ࣝଷ଴೚ ൌ ൮

െ21.66 1.58݁15 െ1.84݁15 4.44݁17
55.60 െ5.36݁13 1.31݁16 െ3.19݁18

െ5.68݁12 6.53݁11 െ1.45݁14 3.53݁16
0 55.6 െ5.36݁13 1.31݁16

൲ 

 

ࣝହ଴೚ ൌ ൮

െ25.46 3.82݁15 െ3.71݁15 2.91݁17
22.70 െ6.60݁13 8.32݁15 െ1.05݁18

െ1.37݁13 1.58݁12 4.34݁14 െ5.47݁16
0 22.70 െ6.60݁13 8.32݁15

൲ 

 
It can be seen that rank of C has the same rank as A. 
 

࣬ ሺࣝሻ ൌ ࣬ ሺܣሻ ൌ 4 
 
Therefore matrix C is full rank and the system is fully 

controllable. Hence simple state-feedback law can be used to 
stabilize the system by arbitrary assignment of desired closed 
loop eigenvalues. 

V. STATE-FEEDBACK LAW 
The linear, time-invariant, state feedback is defined by 
 
ݑ  ൌ  െ݇(7) ݔ 

 
and the state-space model in (1) become 
 

ሶݔ  ൌ ሺܣ െ  (8) ݔሻܭܤ
 
Hence the desired characteristic equation can be equated 

with det (sI-(A-BK)) to find the feedback control gains of the 
states. 

VI. CONCLUSION 
Oblique sweep configuration produces lower drag at higher 

speed compared to symmetrically swept aircraft. This 
configuration has superior aerodynamic advantages which 
puts it in a unique position for the next generation supersonic 
aircraft. The lateral motion of the proposed conceptual aircraft 
is controllable. The new conceptually designed aircraft is 
stabilizable with respect to lateral motion. Advanced 
controller such using state-feedback or LQ (Linear Quadratic) 
Controller can be used.  

Future Investigation will be carried out considering the non-
linearized lateral motion with aileron and rudder inputs. 
Higher Mach will also be considered in the future works.  
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