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Numerical Treatment of Block Method for the
Solution of Ordinary Differential Equations

A. M. Sagir

Abstract—Discrete linear multistep block method of uniform
order for the solution of first order initial value problems (IVPs) in
ordinary differential equations (ODEs) is presented in this paper. The
approach of interpolation and collocation approximation are adopted
in the derivation of the method which is then applied to first order
ordinary differential equations with associated initial conditions. The
continuous hybrid formulations enable us to differentiate and
evaluate at some grids and off — grid points to obtain four discrete
schemes, which were used in block form for parallel or sequential
solutions of the problems. Furthermore, a stability analysis and
efficiency of the block method are tested on ordinary differential
equations, and the results obtained compared favorably with the exact
solution.
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[. INTRODUCTION

ET us consider the numerical solution of the first order
ordinary differential equation of the form

y =f(x,y), a<x<b @))]

with associated initial or boundary conditions. The
mathematical models of most physical phenomena especially
in mechanical systems without dissipation leads to initial
value problem of type (1). Solutions to initial value problem of
type (1) according to Fatunla [1], [2] are often highly
oscillatory in nature and thus, severely restrict the mesh size of
the conventional linear multistep method. Such system often
occurs in mechanical systems without dissipation, satellite
tracking, and celestial mechanics.

Phenomena in many disciplines are modeled by first-order
differential equations such as in mechanical system, electrical
circuits, population models, Newton’s law of cooling,
compartmental analysis, Garity [3]

Lambert [4] and several authors such as Onumanyi et al.
[5], Agbeboh et al. [6], and Sunday & Odekunle [7], have
written on conventional linear multistep method:

Z]k=0 X Vn+j = hZ}‘:o ﬁjfnﬂ' k=2 2)
or compactly in the form
p(E)yn = ha(E)fy 3)
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where E is the shift operator specified by Ely, = Yn+j While
pand o are characteristics polynomials and are given as

p(&) = Theo ), () = Tfo B, ¢ )

yn is the numerical approximation to the theoretical solution
y(x) and f, = £(xp, Y)-

In the present consideration, our motivations for the study
of this approach is a further advancement in efficiency, i.e.
obtaining the most accuracy per unit of computational effort,
that can be secured with the group of methods proposed in this
paper over Agbeboh et al. [6], and Sunday & Odekunle [7].

A. Definition: Consistent, Lambert [4]

The linear multistep method (2) is said to be consistent if it
has order p = 1, that is if

Yoo =0and T,j o — X, B=0 (5)

Introducing the first and second characteristics polynomials
(4), we have from (5) LMM type (2) is consistent if

p(1) =0, p'(1) =3(1)
B. Definition: Zero Stability, Lambert [4]

A linear multistep method type (2) is zero stable provided
the roots Ej, j = 0(1)k of first characteristics polynomial p(&)

specified as p(¢) = det|Xi, ADEX| = 0 satisfies gl <1
and for those roots with |é§].| = 1 the multiciplicity must not
exceed two. The principal root of p(§) is denoted by & =
g =1

C. Definition: Convergence, Lambert [4]

The necessary and sufficient conditions for the linear
multistep method type (2) is said to be convergent if it is
consistent and zero stable.

D. Definition: Order and Error Constant, Lambert [4]

The linear multistep method type (2) is said to be of order p
if cg= ¢ =¢y..cp =0butcpy; # 0and ¢,y is called the
error constant, where

COZZ]kz() 0(] = 0C0+ 0(1+0C2+ +0Ck
Ci :Z}(:Oj OC] = (0(1+ 2 0C2+ 3 0(3+ +k (xk)
By + By + B, +B)

_vk 1:2 k
Cz*Z,-:oz] “j‘Zj:ij
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(ot 29 et 3% oyt .+ kI o)

_ﬁ(ﬁl +20@ DB, 4+ 3@ DR +... + k@B )
(6)

E. Theorem: Lambert, [4]

Let f (X, y) be defined and continuous for all points (X, y) in
the region D defined by {(X, y) : a<Xx<bh, —co <y < oo} where
a and b finite, and let there exist a constant L such that for
every X, Y, y* such that(x, y) and (X, y* ) are both in D:

[FO,y) —Fy*) <Ly —y ™ 0

Then if n is any given number, there exist a unique solution
Y(X) of the initial value problem (1), where y(X) is continuous
and differentiable for all (x, y) in D. The inequality (7) is
known as a Lipschitz condition and the constant L as a
Lipschitz constant.

II. DERIVATION OF THE PROPOSED METHOD

We proposed an approximate solution to (1) in the form

y() = EEFax! = yny, ®)
i=0(1)m+t—1

y'(x) = ]”(')“ Li(i — Dax'™? = Foso 9)
i=2@)m+t—1

with m = 1, t = 4 and p = m+t-1 where the a;,j = 0,1, (m +
t — 1) are the parameters to be determined, t and m are points
of interpolation and collocation respectively where P, is the
degree of the polynomial interpolant of our choice.

Specifically, we collocate (9) at X = Xu45,j = 0(1)k and
interpolate (8) at X = X4,

j = 0(1)k — 2 using the method described above.

The matrix D of the proposed method is expressed as:

1 X, X2 x3 Xp
Xp+h (X, +h)? (x,+h)3 (%p + h)*
D={1 *»*t 2h  (x,+2h)? (x4, +2h)® (x, +2h)* (10)
1 1 1 1
1 Xn+zh (Xn +;h)2 (Xn+;h)3 (Xn+;h)4
0 1 2x,+6h 3(x, + 3h)? 4(x, + 3h)3

Matrix D in (10), which when solved either by matrix
inversion techniques, or Gaussian elimination method to
obtain the values of parameters o;°, j = 0, 1, ... which is
substituted in (8) yields, after some algebraic manipulation,

the new continuous form of Block Hybrid Backward
Differentiation Formulae for the solution

yx) = Z}(:o G (X)Yn+j + Z]k:o Bj(x)f,; is obtain as:

yx) =

{ 1 (134h4+507xnh3+602x§,h2+267x§,h+38xﬁ)
134 h* -

L(507h3+1204xnh2+801xﬁh+152x§,)x+

134 h*
1 (602h2+801xnh+228x,21) 2 1 (267h+152xn
134 h* 134
1 (xn(186h3+517xnh2+316xﬁh+52x )
67 h*
2 93h3+517xnh2+474-x%h+104xr3lx 1 517hz+948xnh+312x,%x2
67 h* 67 h*
4 79h+52x, %3 4)
67  h* + 67h4 Yner
1 xn(460xnhz+393xnh+74x%+141h3)+

402 h*
1 920x,h?+1179x2h+296x3+141h3 1 406h?+1179x,h+444x2

402 h* 402 h*
1 393h+296xn 3 37 )
_ 7 — +
402 ht 201% ) Yn+2
( 16 xn(11x,§+72x,€h+139xnh2+78h3)+
201 h*
32 22x3+108x2h+139x,h?+39h3 16 66xﬁ+21exnh+139h2x2 4
201 h* 201 h*
11x,+18h 176 1 x,(2x3+7x2h+7x h2+2h3
n 3 _ x4) Y .1 + ( nisxn n
h# 201h* n+; h3
1 8x3+21xZh+14x,h%+2h3 1 12x2+21x,h+7h? 2 1 8xy+7h X3
67 h3 67 h3 67 h3

2 x*) fura)

%3 + 67,[4 )yn

o

~

x? +

(an

Evaluating (11) at x = X,+3 and its first derivative at X = X1,
X = X2 , X = X1 yield the following four discrete hybrid
2

schemes which are used as a block integrator;

225 150 192 50 30
@77 Yns1= 7 Va2 + Ynes — 57 Vsl Eyn =57 Wfnts
52 448 72
(B) Yner + 557 Vne2 — 355 3227nik T390 T ﬁh{201fn+1 + 3fn+al
1476 loss 261

1
(C)m)’nﬂ ~ Yotz — 649 —h{—402fn,; + 36fn43}

549 el TGag¥n =

2880 . 245 + +
1600Yn+1 1600Yn+2 y 1

@- - w5

—1608f, 1+ 18fn+3}

(12)

16007

Equations (12) constitute the member of a zero stable block
integrators of order (4,4,44)" with

15 41 97 79 .
Cs = (——, —,——,——). The application of the
268’ 4020’ 2680° 8576

block integrators with n = 0 gives the accurate values as

shown in Tables I and II of forth section of this paper. To start

the IVP integration on the sub interval [X,, X3], we use (12)

when n = 0 to produce simultaneously values for

V1,¥2,¥3 and y1 without recourse to any predictor — corrector
2

method to provide y; and y, in the main method. Hence, this is
an improvement over other cited works.
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III. STABILITY ANALYSIS

Recall, that, it is a desirable property for a numerical
integrator to produce solution that behave similar to the
theoretical solution to a problem at all times. Thus, several
definitions, which call for the method to posses some
“adequate” region of absolute stability, can be found in several
literatures. See Lambert [4], Fatunla [1], [2] etc.

The four discrete schemes proposed in this report in (12) are
put using Fatula’s approach [ ]

ie. AQY, =¥K Ay, +h¥k BOF,_; (13)

where h is a fixed mesh size within a block, Al, B, i = 0(1)k
are r by r matrix coefficients, A(®) is r by r identity matrix,

withy, = (hyzoo) usually giving along the initial value problem.

Equation (14) is the 1- block 4 point method. The first
characteristics polynomial of the proposed 1- block 4 — point
method is given by

p() = det [A1 — A (15)
A 0 0 -1
_ 0120 -1
p(?x)—deto 0 1 -1 (16)
001 A-1

Solving the determinant of (16), yields p(A) = A3(A—1) ,
which implies, ; = A, =23 =0o0rA, =1

Y, Ym—jand F,,_; are vectors of numerical estimates By definition of zero stable and (16), the hybrid method is
described by zero stable and is also consistent as its order (4,4,4,4)" > 1,
thus, it is convergent following Henrici [8] and Fatunla [2].
Yn+1 Yn-r fh1 for
[Ynn} [ . } fotz . IV. IMPLEMENTATION OF THE METHOD
Y. =] You=| F.. = Fo.= This section deals with numerical experiments b
m y m-1 y m ) m-1 i . X ) . p y
v ¢ considering the derived discrete schemes in block form for
y' ;H l f. J “f“ solution of differential equations of first order initial value
nr n n+r n problems. The idea is to enable us see how the proposed
_ . methods performs when compared with exact solutions. The
For n = mr and for some integer m = 0 . .
. . . results are summarized in Tables I & II.
This give rise to:
A. Numerical Experiment
o o o X
67 |rf 1 .
[-ﬂ 2510 1] [0 00 _% 0o = oo - fl From Agbeboh et al. [6]; consider the IVP y' = —y,
:;f i _% o] fo o o g yocs e, e - % e y(0) = 1,x € [0,1], h = 0.1, whose exact solution is y = e™*
_loss 176y olym Tlooo o~z Pl TR 00
o 524:30 245 Yn+3 1%4395 In 0 0 0 0]ff-s
1 ~Tw 16w 000~ 00 0 0|fas
*1o 0 0 of|fas
00 o ollf,
(14)
TABLEI
RESULTS FOR THE PROPOSED METHOD
. Approximate Error of Proposed Error of Agbeboh et al. [6]
X Exact Solution Solution Method Method
0.1 0.9048374190 0.9048374190 0.0000000000E+00 0.2369581120E-07
0.2 0.8187307548 0.8187307547 1.0000000827E-10 0.4288171396E-07
0.3 0.7408182230 0.7408182186 4.4000000310E-09 0.5820146953E-07
0.4 0.6703200488 0.6703200387 1.0099999947E-08 0.7021715764E-07
0.5 0.6065306629 0.6065306501 1.2800000060E-08 0.7941889080E-07
0.6 0.5488116395 0.5488116201 1.9400000051E-08 0.8623342206E-07
0.7 0.4965853074 0.4965852654 4.2000000033E-08 0.9103176596E-07
0.8 0.4493289679 0.4493288879 8.0000000013E-08 0.9413594187E-07
0.9 0.4065696636 0.4065695729 9.0700000011E-08 0.9582493909E-07
1.0 0.3678794450 0.3678793518 9.3199999995E-08 0.9633999071E-07

B. Numerical Experiment
From Sunday and Odekunle [7];

in the colony after some hours if an individual produces an
average of 0.2 offspring every hour?
We assume that y(t) is the population size at time t. This

Consider the differential equation of growth model of the

form of y' = ay, y(0) = 1000, t € [0,1], h = 0.1 (*)
Equation (*) represents the rate of growth of bacteria in a

colony. We shall assume that the model grows continuously

and without restriction. One may ask how many bacterial are

therefore implies that equation (*) may be written as: y' =
0.2y, y(0) = 1000, te€ [0,1], h=10.1
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TABLE II
RESULTS FOR THE PROPOSED METHOD

Exact Solution

Approximate Soln.

Error of Proposed

Error of Sunday and

Method Odekunle [7] Method

0.0 1000.000000 1000.000000 0.00000000E-+00 0.00000000E-+00
0.1 1020.201340 1020.201340 0.00000000E+00 0.00000000E+00
0.2 1040.810774 1040.810774 0.00000000E+00 0.00000000E+00
0.3 1061.836547 1061.836547 0.00000000E-+00 0.00000000E-+00
0.4 1083.287068 1083.287068 0.00000000E-+00 0.00000000E-+00
0.5 1105.170918 1105.170918 0.00000000E-+00 0.00000000E-+00
0.6 1127.496852 1127.496852 0.00000000E+00 0.00012207E-04
0.7 1150.273799 1150.273798 1.000000000E-06 0.00012207E-04
0.8 1173.510871 1173.510823 4.800000000E-05 0.00012207E-04
0.9 1197.217363 1197.217312 5.100000000E-05 0.00024414E-04
1.0 1221.402758 1221.402692 6.600000000E-05 0.00024414E-04

1.20E-07

1.00E-07

M Error of

8.00E-08 Proposed
S
2 6.00E-08 Method
[¥T]
4.00E-08 - M Error of
Agbeboh
2.00E-08 - etal
Method
0.00E+00 -
01 02 03 04 05 06 07 08 09
Step size, h
Fig. 1 Comparative Error Analysis of Table I
3.00E-08 ;

M Error of
2.50E-08 Praca-dd
2.00E-08 Method

A
g 1.50E-08 M Error of
i 1.00E-08 2gogay %
i < Odekunle
5.00E-09 Method
0.00E+00

0O 01 02 0304 05 06 0.7 08 09 1
Step size, h

V. CONCLUSION

following desirable properties:

Being self — starting as such it eliminate the use of

predictor — corrector method

In this paper, a new block method with uniform order was
developed. The resultant numerical integrator posses the

Fig. 2 Comparative Error Analysis of Table II

=  Convergent schemes
= Facility to generate solutions at 4 points simultaneously
=  Produce solution over sub intervals that do not overlaps.
= Zero stability

In addition, the new schemes compares favorably with the
theoretical solution and the results are more accurate than the
result of Agbeboh et al. [6], and Sunday & Odekunle [7], see
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Tables 1 and II respectively. Hence, this work is an
improvement over other cited works.
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