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Elliptic PDEs on Regular Polygon Domains
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Abstract—A generalized Dirichlet to Neumann map is

one of the main aspects characterizing a recently introduced

method for analyzing linear elliptic PDEs, through which it

became possible to couple known and unknown components

of the solution on the boundary of the domain without

solving on its interior. For its numerical solution, a well con-

ditioned quadratically convergent sine-Collocation method

was developed, which yielded a linear system of equations

with the diagonal blocks of its associated coefficient matrix

being point diagonal. This structural property, among others,

initiated interest for the employment of iterative methods for

its solution. In this work we present a conclusive numerical

study for the behavior of classical (Jacobi and Gauss-Seidel)

and Krylov subspace (GMRES and Bi-CGSTAB) iterative

methods when they are applied for the solution of the Dirich-

let to Neumann map associated with the Laplace’s equation

on regular polygons with the same boundary conditions on

all edges.

Keywords—Elliptic PDEs, Dirichlet to Neumann Map,

Global Relation, Collocation, Iterative Methods, Jacobi,
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I. INTRODUCTION

ANew approach for analyzing boundary value prob-

lems for linear and for integrable nonlinear PDEs

in two dimensions was introduced in [1] and [4].

This approach characterizes a generalized Dirichlet to

Neumann map through the solution of the so-called

global relation, namely, an equation, valid for all values
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of a complex parameter k, coupling specified known

and unknown values of the solution and its derivatives

on the boundary.

For a large class of boundary value problems, the global

relation can be solved analytically (see e.g. [4]-[6]), and

hence the generalized Dirichlet to Neumann map can

be constructed in closed form. However, for general

boundary value problems, the global relation must be

solved numerically.

The implementation of the new method to the case

of the Laplace equation in an arbitrary bounded con-

vex polygon was presented in [2], where a Sine-

Collocation type numerical method was also intro-

duced. In [3], we introduced a new set of Collocation

points which yielded a well-conditioned quadratically

convergent Sine-Collocation method. Moreover, the di-

agonal blocks of the associated coefficient matrix of the

corresponding linear system were diagonal matrices.

That is, the collocation coefficient matrix is by con-

struction block-Jacobi preconditioned, pointing directly

to the efficient implementation of iterative techniques.

The first indicative numerical results, included in [3],

relevant to the behavior of certain iterative methods,

provided further support to this argument.

In the work herein, we present a conclusive numerical

study for the behavior of the classical Jacobi and

Gauss-Seidel as well as the GMRES[7] and the Bi-

CGSTAB[8] iterative techniques applied to the solution

of the model Dirichlet to Neumann map related to the

Laplace’s equation on several regular polygons with the

same boundary conditions on all edges. We concluded

that, while for polygons with small number of edges

all methods converge rapidly, the Bi-CGSTAB method

is the method of choice as it converges always faster in

all cases of polygons independently of the number of

edges, the number of basis fuctions and the boundary

conditions.

The paper is organized as follows: Section 2 outlines

some of the analytical results of [2] and [3] together
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with the construction of the related Collocation linear

system. Section 3 presents the numerical study for the

behavior of the iterative methods considered.

II. OVERVIEW

To fix notation (see [2], [3]), let us consider the

complex form of Laplace’s equation in the independent

variable q
∂2q

∂z∂z̄
= 0 . (1)

The above equation is equivalent to the equation

∂

∂z

(
e−ikz ∂q

∂z

)
= 0 (2)

for an arbitrary complex parameter k. Suppose, now,

that the real-valued function q(z, z̄) satisfies Laplace’s

equation (1) in a simply connected bounded domain

D with boundary ∂D. Then, equation (2), combined

with the complex form of Green’s theorem implies the

equation ∫
∂D

e−ikz ∂q

∂z
dz = 0, k ∈ C . (3)

Equation (3) is referred to as the global relation as-

sociated with Laplace’s equation. If we now consider

the case of D being a convex bounded polygon with

vertices z1, z2, . . . , zn (modulo n) have been indexed

counter-clockwise (see Fig. 1), then the global relation

(3) becomes

n∑
j=1

∫
Sj

e−ikz ∂q

∂z
dz = 0, k ∈ C , (4)

where Sj denotes the side from zj to zj+1 (not includ-

ing the end points).

zj

zj+1

zj−1

Sj

Sj−1

D

Fig. 1. Part of the bounded convex polygon with vertices

zj , sides Sj , and interior D.

Let, now, for z ∈ Sj , 1 ≤ j ≤ n,

• g(j) denote the derivative of the solution in the

direction making an angle βj , 0 ≤ βj ≤ π with

the side Sj , i.e.

cos (βj) q(j)
s + sin (βj) q(j)

n = g(j),

• f (j) denote the derivative of the solution in the

direction normal to the above direction, i.e.

− sin (βj) q(j)
s + cos (βj) q(j)

n = f (j),

where q
(j)
s and q

(j)
n denote the tangential and (outward)

normal components of ∂q
∂z

along the side Sj . For z ∈ Sj

and −π < s < π, with

z =
1

2
(zj + zj+1) +

s

2π
(zj+1 − zj) ,

the Generalized Dirichlet-Neumann map, that is the re-

lation between the sets
{
f (j)(s)

}n

j=1
and

{
g(j)(s)

}n

j=1
,

is characterized by the single equation

n∑
j=1

|hj | e
i(βj−kmj)·

·

π∫
−π

e−ikhjs
(
f (j) − ig(j)

)
ds = 0, k ∈ C

(5)

where, for j = 1, 2, . . . , n,

hj :=
1

2π
(zj+1 − zj) , (6)

mj :=
1

2
(zj+1 + zj) , (7)

and zn+1 = z1. Evaluating equation (5) on the follow-

ing n-rays of the complex k-plane

kp = −
l

hp
, l ∈ R

+, p = 1, . . . , n (8)

and multiplying the resulting equations by

exp [−i (βp + lmp/hp)] / |hp|, equation (5) yields the

following set of n equations (cf. [2]):

n∑
j=1

|hj |

|hp|
ei(βj−βp)e

− il

hp
(mp−mj)·

·

π∫
−π

e
il

hj

hp
s
(
f (j) − ig(j)

)
ds = 0,

(9)

for p = 1, . . . , n.

Suppose that the set
{
g(j) (s)

}n

j=1
is given, and that{

f (j) (s)
}n

j=1
is approximated by

{
f

(j)
N (s)

}n

j=1
where

f
(j)
N (s) = f

(j)
∗ (s) +

N∑
r=1

U j
r ϕr(s) (10)
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with N being an even integer, and

2πf
(j)
∗ (s) = (s + π) f (j) (π)−

− (s − π) f (j) (−π) .
(11)

Note that the values of f (j)(π) and f (j)(−π) can be

computed by the continuity requirements at the vertices

of the polygon. The set of functions {ϕr (s)}N
r=1 are the

basis functions which, for the purpose of this paper, are

constructed from the Sine functions; namely

ϕr(s) = sin(r
π + s

2
) (12)

Then, the real coefficients U j
r satisfy the (Nn)× (Nn)

system of linear algebraic equations (cf. [3])

n∑
j=1

|hj |

|hp|
ei(βj−βp)e

−i l

hp
(mp−mj)·

·
∑

U j
r

π∫
−π

e
il

hj

hp
s
ϕr(s)ds = Gp (l)

(13)

where Gp(l) denotes the known function

Gp (l) = i
n∑

j=1

|hj |

|hp|
ei(βj−βp)e

−i l

hp
(mp−mj)·

·

π∫
−π

U j
r e

il
hj

hp
s
(
g(j) (s) + if

(j)
∗ (s)

)
ds

(14)

and l is chosen as follows:

• For the real part of equations (13) ,

l =
1

2
,
3

2
, . . . ,

N − 1

2

• For the imaginary part of equations (13)

l = 1, 2, . . . , N/2 .

It was the choice of the aforementioned collocation

points (defined by the choice of the parameter l) that

lead us to a well conditioned point diagonal collocation

matrix, shown schematically in Fig. 2. The, numerically

observed, convergence rate of the method is quadratic

[3] and as the matrix is, by default, Block Jacobi

Preconditioned, iterative methods appear to be a natural

choice for the solution of the corresponding collocation

system.

−25

−20

−15

−10

−5

0

Fig. 2. The structure of the collocation coefficient matrix

for n = 6 and N = 32

III. NUMERICAL STUDY OF ITERATIVE METHODS

In this section we have included results, from the

numerical study conducted, pertaining to the behavior

of iterative methods for the class of Laplase’s problems

having the same boundary conditions on all polygon’s

edges. For this class, following the analysis included

in section II and particularly equation (13), which

describes the linear system under consideration, one

may easily verify that the Collocation coefficient matrix

depends only on the choice and the number of the basis

functions as well as on the number of the polygon’s

edges, while at the same time remains independent

from the form of the boundary conditions and the form

of the exact solution of Laplace’s equation. Therefore,

the numerical study focuses on the convergence behav-

ior of iterative methods with respect to the number of

vertices and the number of basis functions. However,

for the sake of completeness, we have included exper-

iments of all kind of boundary conditions for different

polygon sizes. For simplicity and space economy, the

results included here are related to a model Laplace

equation with exact solution ([2], [3])

q(x, y) = sinh(3x) sin(3y) . (15)

We are pointing out once more, that all iterative meth-

ods behave similarly in all cases of problems of this

class with Dirichlet (βj = 0), Neumann (βj = π/2)

or Mixed (βj = π/3) boundary conditions. The rel-

ative error E∞, used to demonstrate the convergence

behavior of the iterative methods, is given by

E∞ =
||f − fN ||∞

||f ||∞
, (16)
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where

||f ||∞ = max
1≤j≤n

{
max

−π≤s≤π
|f (j)(s)|

}
(17)

and

||f − fN ||∞ = max
1≤j≤n

{
max

−π≤s≤π
|f (j)(s) − f

(j)
N (s)|

}
,

(18)

with f
(j)
N as in (10), and the max over s is taken

over a dense discretization of the interval [−π, π].
For the direct solution of the linear systems we have

used the standard LAPACK routines, while for the

computation of the right hand side vector we have used

a routine (dqawo) from QUADPACK implementing the

modified Clenshaw-Curtis technique. Apart from the

classical Jacobi and Gauss-Seidel methods we have

also considered the representative Krylov GMRES(10)

and Bi-CGSTAB methods in two forms : (a) the un-

preconditioned form or, equivalently, the block Jacobi

preconditioned, due to the structure of the collocation

matrix, and (b) the Symmetric Gauss-Seidel (SGS) pre-

conditioned form, a two sided preconditioning method

derived from the Symmetric SOR preconditioner for

ω = 1. The maximum number of iterations, allowed for

all methods to perform, is set to 200 and the tolerance

for the stopping criteria in all methods is set to 10−6.

The zero iterate U (0) is set to be equal to the right hand

side vector. The results we have included refer to the

representative cases of regular polygons with 8, 12, 19,

24 , 31 and 36 edges. All polygons are constructed as

in [3]. All experiments were conducted on a multiuser

SUN V880 system using the Fortran-90 compiler.

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

Bi−CGSTAB no pre.

GMRES no pre.

Bi−CGSTAB SGS pre.

GMRES SGS pre.

GS

Jacobi

Fig. 1 : 8-gon/Dirichlet BC : Reduction of E∞ vs Iterations (N = 32)

TABLE I

REGULAR OCTAGON / DIRICHLET BC : NUMBER OF ITERATIONS

N Jacobi
Gauss- GMRES Bi-CGSTAB

Seidel unpre pre unpre pre

8 40 24 10 6 6 3

16 41 24 10 6 6 3

32 42 24 11 7 6 4

64 42 25 12 7 6 5

TABLE II

REGULAR OCTAGON / DIRICHLET BC : TIME (SEC×10−2)

N LU
Jac- Gauss- GMRES Bi-CGSTAB

obi Seidel unpre pre unpre pre

8 0.6 2.1 1.0 0.4 0.6 0.5 0.5

16 4.5 4.7 2.6 1.3 1.7 1.4 1.7

32 40.6 13.9 8.5 5.8 9.3 4.85 12.4

64 414 105 34 31 30 24 39

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Bi−CGSTAB no pre.

GMRES no pre.

Bi−CGSTAB SGS pre.

GMRES SGS pre.

GS

Jacobi

Fig. 2 : 12-gon/Dirichlet BC : Reduction of E∞ vs Iterations (N = 32)

TABLE III

REGULAR 12-GON / DIRICHLET BC : NUMBER OF ITERATIONS

N Jacobi
Gauss- GMRES Bi-CGSTAB

Seidel unpre pre unpre pre

8 200 87 19 12 10 7

16 200 94 21 12 10 7

32 200+ 98 21 12 12 7

64 200+ 100 21 13 11 7

TABLE IV

REGULAR 12-GON / DIRICHLET BC : TIME (SEC×10−2)

N LU
Jac- Gauss- GMRES Bi-CGSTAB

obi Seidel unpre pre unpre pre

8 1.95 22.5 7.59 1.33 1.99 1.24 1.84

16 15.8 51.1 22.1 6.0 6.3 4.0 6.7

32 135 152 78 23 27 22 28

64 1450 1360 739 239 267 222 271
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10
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10
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Bi−CGSTAB no pre.

GMRES no pre.

Bi−CGSTAB SGS pre.

GMRES SGS pre.

GS

Jacobi

Fig. 3 : 19-gon/Neumann BC : Reduction of E∞ vs Iterations (N = 32)

TABLE V

REGULAR 19-GON / NEUMANN BC : NUMBER OF ITERATIONS

N Jacobi
Gauss- GMRES Bi-CGSTAB

Seidel unpre pre unpre pre

8 div 200+ 20 37 11 14

16 div 200+ 23 53 11 16

32 div 200+ 24 53 11 17

64 div 200+ 24 52 11 19

TABLE VI

REGULAR 19-GON / NEUMANN BC : TIME (SEC)

N LU
Jac- Gauss- GMRES Bi-CGSTAB

obi Seidel unpre pre unpre pre

8 0.08 – >0.44 0.03 0.12 0.03 0.08

16 0.66 – >1.18 0.16 0.65 0.12 0.35

32 5.46 – >4.33 0.76 2.86 0.67 1.68

64 159 – >92.9 14.4 59.5 12.5 42.9

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Bi−CGSTAB no pre.

GMRES no pre.

Bi−CGSTAB SGS pre.

GMRES SGS pre.

GS

Jacobi

Fig. 4 : 24-gon/Dirichlet BC : Reduction of E∞ vs Iterations (N = 32)

TABLE VII

REGULAR 24-GON / DIRICHLET BC : NUMBER OF ITERATIONS

N Jacobi
Gauss- GMRES Bi-CGSTAB

Seidel unpre pre unpre pre

8 div 200+ 28 50 15 21

16 div 200+ 29 78 14 25

32 div 200+ 31 102 15 24

64 div 200+ 32 114 16 25

TABLE VIII

REGULAR 24-GON / DIRICHLET BC : TIME (SEC)

N LU
Jac- Gauss- GMRES Bi-CGSTAB

obi Seidel unpre pre unpre pre

8 0.2 – >0.72 0.07 0.25 0.06 0.19

16 1.37 – >2.00 0.28 1.71 0.24 0.95

32 17.6 – >16.8 3.67 21.6 3.61 10.7

64 323 – >134 27.4 183 26.0 80.5

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Bi−CGSTAB no pre.

GMRES no pre.

Bi−CGSTAB SGS pre.

GMRES SGS pre.

GS

Jacobi

Fig. 5 : 31-gon / Mixed BC : Reduction of E∞ vs Iterations (N = 32)

TABLE IX

REGULAR 31-GON / MIXED BC: NUMBER OF ITERATIONS

N Jacobi
Gauss- GMRES Bi-CGSTAB

Seidel unpre pre unpre pre

8 div 200+ 91 103 23 44

16 div 200+ 89 157 31 53

32 div 200+ 85 200+ 24 57

64 div 200+ 87 200+ 28 59

TABLE X

REGULAR 31-GON / MIXED BC : TIME (SEC)

N LU
Jac- Gauss- GMRES Bi-CGSTAB

obi Seidel unpre pre unpre pre

8 0.35 – >1.17 0.36 0.83 0.14 0.64

16 2.96 – >3.2 1.56 5.38 0.95 3.38

32 66.3 – >61.1 33.0 >144 16.0 69.1

64 909 – >271 144 >635 84.2 345
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Fig. 6 : 36-gon/Dirichlet BC : Reduction of E∞ vs Iterations (N = 32)

TABLE XI

REGULAR 36-GON / DIRICHLET BC : NUMBER OF ITERATIONS

N Jacobi
Gauss- GMRES Bi-CGSTAB

Seidel unpre pre unpre pre

8 div 200+ 200+ 200+ 33 68

16 div 200+ 200+ 200+ 35 76

32 div 200+ 200+ 200+ 37 93

64 div 200+ 200+ 200+ 37 95

TABLE XII

REGULAR 36-GON / DIRICHLET BC : TIME (SEC)

N LU
Jac- Gauss- GMRES Bi-CGSTAB

obi Seidel unpre pre unpre pre

8 0.6 – >1.6 >1.1 >2.2 0.3 1.4

16 4.7 – >4.7 >5.4 >10.4 1.6 7.0

32 133 – >87 >105 >200 35 178

64 1300 – >322 >389 >748 134 695

Figure 1 and Tables I and II summarize the results

pertaining to the case of a Regular Octagon, a represen-

tative case for polygons with relatively small number

of edges (triangles, squares, pentagons, hexagons, etc).

Inspecting these data one may easily observe that :

• All methods converge smoothly in a few iterations

• The convergence rate of the Bi-CGSTAB method

is faster that all other iterative methods

• Preconditioning improves the rate of convergence

but increases the computational cost

• The convergence rate remains independent of N
• LU-factorization competes with the iterative meth-

ods only for small N .

As, now, the number of edges increases we observe that

(see Fig. 2-6 and Tables III-XII):

• The Jacobi method diverges for polygons with

medium and large number of edges

• The Gauss-Seidel method converges smoothly but

very slowly

• The un-preconditioned versions of both Krylov

methods converge smoothly

• The un-preconditioned version of the GMRES

method fails to converge within 200 iterations for

the case of the regular 36-gon

• The un-preconditioned Bi-CGSTAB converged in

all experiments rapidly and its convergence rate re-

mained faster than the un-preconditioned GMRES

and the two classical iterative methods

• The SGS preconditioner for polygons with

medium and large number of edges did not im-

prove the convergence rate of both the Krylov

methods and increased in all cases the computa-

tional cost

• The Krylov methods (except GMRES for the case

of the 36-gon) are spectacularly more efficient than

LU-factorization.

In conclusion, the un-preconditioned version of the

Bi-CGSTAB is the most efficient and safe method

to be employed for the solution of the linear system

arising from the solution of the Dirichlet to Neumann

map associated with the Laplace equation on regular

polygons with the same Dirichlet, Neumann or Mixed

Boundary Conditions on all edges. A spectral analysis

for the theoretical justification of these results is under

development.
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