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Abstract—Tailor-welded Blanks (TWBs) are tailor made for 

different complex component designs by welding multiple metal 
sheets with different thicknesses, shapes, coatings or strengths prior 
to forming. In this study the Hemispherical Die Stretching (HDS) test 
(out-of-plane stretching) of TWBs were simulated via 
ABAQUS/Explicit to obtain the Forming Limit Diagrams (FLDs) of 
Stainless steel (AISI 304) laser welded blanks with different 
thicknesses. Two criteria were used to detect the start of necking to 
determine the FLD for TWBs and parent sheet metals. These two 
criteria are the second derivatives of the major and thickness strains 
that are given from the strain history of simulation. In the other word, 
in these criteria necking starts when the second derivative of 
thickness or major strain reaches its maximum. With having the time 
of onset necking, one can measure the major and minor strains at the 
critical area and determine the forming limit curve. 
 

Keywords—TWB, Forming Limit Diagram, Necking criteria, 
ABAQUS/Explicit 

I. INTRODUCTION 

AILOR-WELDED Blanks (TWBs) are tailor made for 
different complex component designs by welding multiple 

metal sheets with different thicknesses, shapes, coatings or 
strengths prior to forming [1]. Then the prepared blanks are 
formed to the desired shapes by appropriate forming method. 
For example in automotive industries, the final blank is 
stamped to the desired shape for the car body panel. In this 
technique, one can use the stronger or thicker sheets where 
needed and in this way a local stiffness is obtained which 
leads to product weight reduction without loss of stiffness and 
safety. The TWB technique has benefits for the producers, 
consumers and the environment due to weight reduction that 
causes less material and fuel consumption. Forming behavior 
is the most important factors in applying TWB in the 
automotive industries, although the cost should be studied, 
too.  The Forming Limit Diagram (FLD) has been accepted for 
the formability prediction of sheet metals and could be used 
for TWBs. A forming limit diagram, also known as a forming 
limit curve, is used in sheet metal forming for predicting 
forming behavior of sheet metal [2,3]. The concept of the FLD 
was developed by Keeler et al [4] and Goodwin [5] and then 
become industrialized concept, could be achieved theoretically 
and experimentally.  
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To find the FLD, the sheet metal is subjected to various 

combinations of principal stresses (σ1 and σ2) to create 
different combination of principal strains (ε1 and ε2). For this 
purpose, usually the sheet metal specimens are stretched with 
constant length and variable widths via a hemispherical punch 
(out-of-plane stretching) or flat punch (in-plane stretching), or 
stretched with single geometry specimens with different 
lubricants. As the experimental method is both expensive and 
time consuming, in this paper a numerical simulation method 
is introduced by which precise, rapid and less expensive FLDs 
are produced only with applying the mechanical properties 
that resulted from uniaxial tensile test. 

In recent years, many researches have attempted to develop 
precise and reliable models to find FLCs of base metals and 
several necking criteria have been proposed to predict the 
onset of localized necking [6,7]. For the predicting forming 
limit of Tailor Welded Blanks, Naik et al introduced some 
necking criteria, namely the effective strain rate based 
criterion (ESRC – RC1), major strain rate based criterion 
(MSRC – RC2), thickness strain rate based criterion (TSRC – 
RC3), and thickness gradient based criterion (TGNC – RC4) 
[8]. For the present work these criteria were evaluated and 
among them two criteria were preferred to develop an accurate 
model to find FLCs of TWBs. 

II. METHODOLOGY 
The Hemispherical Die Stretching (HDS) test via 

ABAQUS/Explicit FE code is simulated in 3D space to 
evaluate and analyze the formability of TWBs. Dry friction 
state was assumed and the friction coefficient between the 
blank and the punch was assumed to be µ=0.1. The die 
modeled as rigid with 100mm diameter of punch and 
105.6mm the diameter of matrix.  

Holder and the punch were allowed to move in the Z 
direction along the axis of the punch and the matrix is fixed. 
The modeled die is shown in the Figure 1 and the blanks were 
modeled as deformable solid and meshed with the C3D8R 
elements. 

 
Fig. 1 Modeled HDS die 
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Fig. 18 FLCs of TWB 1.0/1.5 mm 

VII. CONCLUSIONS 
The main aim of the reported work was the presentation  of 

two FE model to predicting the formability of TWBs with two 
necking criteria that may be more applied in the automotive 
industry that use TWB technology. Following conclusions can 
be drawn from the study. 

 
• Both criteria show the same results for necking place and 

fracture time. As shown in the Figure 4, Figure 7 and Table. 
2, both the second derivative of major strain and thickness 
strain with good accuracy are similar in prediction the 
necking zone and fracture time. Therefore, one can use both 
of them for predicting the necked zone and fracture time in 
the industrial applications. 

• Second derivative of thickness strain present more reliable 
results. Figures 14 to 18 show that the forming limit results 
of second criteria (second derivative of thickness strain) are 
closer to the experimental results and then the second 
criteria showing better accuracy. Therefore, when one need 
to predict the forming limits is better to use the second 
derivative of thickness strain as the necking criteria for 
modeling and simulation the process. 
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