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Numerical Prediction of Bearing Strength on
Composite Bolted Joint Using Three Dimensional

Puck Failure Criteria
M. S. Meon, M. N. Rao, K-U. Schröder

Abstract—Mechanical fasteners especially bolting is commonly
used in joining carbon-fiber reinforced polymer (CFRP) composite
structures due to their good joinability and easy for maintenance
characteristics. Since this approach involves with notching, a proper
progressive damage model (PDM) need to be implemented and
verified to capture existence of damages in the structure. A three
dimensional (3D) failure criteria of Puck is established to predict the
ultimate bearing failure of such joint. The failure criteria incorporated
with degradation scheme are coded based on user subroutine executed
in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as
target configuration. The results revealed that the PDM adopted here
could sufficiently predict the behaviour of composite bolted joint up
to ultimate bearing failure. In addition, mesh refinement near holes
increased the accuracy of predicted strength as well as computational
effort.

Keywords—Bearing strength, bolted joint, degradation scheme,
progressive damage model.

I. INTRODUCTION

THE extensive use of laminated composite especially for
CFRP in aerospace and automotive applications over the

years indicates the importance of this material to the world.
Their excellent qualities such as high specific strength, fatigue
and corrosion resistance as well as the stiffness-to-weight
ratio are fascinating characteristics mainly for light weight
structures. The use of CFRP laminated structures fastened
by bolting connections is quite common in many structures.
However, notches manufactured for this connections produced
severe stress concentrations [1]. The areas near the holes
experience higher stress concentration factors compared to
areas further away from this region. This situation tends
to create damage initiation leading to total failure of the
corresponding structure. Thus, the PDM is frequently used to
make prediction of failure in composite structures.

The initial works related to predicting the damage on
composite structures started in decades and many damage
modelling approaches are presented and discussed in thorough
investigations. Until now, there are four damage modelling
techniques in composites referred as failure criteria, fracture
mechanics, plasticity and damage mechanics approaches [2].
Among those methods, failure criteria is mostly used by many
researchers to predict damage on composite structures. The
criteria is usually formulated based on stresses and performed
well when compared to experimental results [3].
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The idea of implementing PDM to composite structures
numerically is presented in the detailed explanation highlight
the use of failure criteria and degradation techniques [4], [5].
The pioneering works on predicting failure of unidirectional
(UD) composite structures based on different type of failure
modes are presented by Hashin and Rotem [6], [7] where the
theory used is able to identify four major failure modes namely
tensile and compressive fibre and matrix failures. Yamada
and Sun [8] proposed a failure theory based on the in-situ
strength that suited for the fiber controlled laminates. Chang
and Chang [9] conducted a more detailed investigation based
on Yamada theory by introducing shear nonlinearity mode
of failure. A physically based model is developed by Puck
and Schürmann [10], which is an extension of Hashin failure
criteria emphasising on the fracture angle on the fracture plane.
Fracture angle is iteratively evaluated to identify inter-fiber
failure (IFF) of any particular structure.

To determine the holistic failure behaviour, failure criteria
together with material degradation model are necessary.
The most popular degradation scheme is ply discounting
(PD) method due to its simple formulation and ease to
implement numerically. The degradation technique is achieved
either by instantaneous unloading [11], gradual unloading
[12] or constant stress [13] at ply failure. Once failure is
initiated or detected, stiffness parameters are reduced based on
corresponding failure modes. Conducting failure assessment
of bolted joints incorporating PDMs becoming a field of
interest since the existence of finite element (FE) approach.
The factors influencing the damage behaviour of bolted joint
include material properties [14], coefficient of friction [15],
[16], bolt shape [17], [18] and clearance [19]. Camanho
and Matthews [20] analysed the progression and strength of
mechanically fastened joints in composite laminates using 3D
failure criteria of Hashin with stiffness degradation approach.
Ireman [21] conducted a wide range of experiments related
to bolted joint of composite and aluminium structures, as
well as stress analysis numerically. McCarthy et. al [19]
focussed on variation bolt-hole clearance and its effect on the
total strength. Hashin 3D model is used with simple sudden
degradation technique. Analysis of bearing failure on bolted
joints is performed by Riccio [18] by including the effect of
fibre-matrix shear out failure in 3D Hashin theory to make
the evaluation more meaningful. Effect of delamination is
studied in Tserpes et. al [22] works concerning prediction of
residual strength and ultimate failure of single-lap bolted joint.
The model mentioned above gave good approximation with
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experimental data.
Based on previous studies, the strength analysis in 3D

failure criteria of Puck combined with ply discount method
for bolted joints are performed in this paper. 3D failure theory
is crucially needed in order to capture damage initiation,
especially for joined structures. As motivation to develop such
a simple and reasonable damage model suited for composite
structures, combination of maximum stress failure theory and
Puck’s formulation is seen to numerically compute the failure
in proper manner. The PDM is developed using Fortran
code and linked to Abaqus for numerical evaluation. The
numerical results are verified by experimental data available
from literature.

II. PROGRESSIVE DAMAGE MODEL

Progressive damage model consists of damage initiation and
progression criterion. Damage initiation is detected through
the use of failure criteria for fibre failure (FF) and inter-fibre
failure (IFF). Damage evolution approach is used to analyse
propagation of damage by degrading the material properties
(i.e reduced stiffness matrix).

A. Physically Based Failure Criteria

A three-dimensional failure theory of Puck [10] is used in
this paper to predict the failure initiation of composite joint.
The failure criteria is divided into two major mode of failures
which are fibre failure (FF) and inter-fibre failure (IFF), both
in tension and compression.for the sake of simplification, FF
is evaluated based on maximum stress failure theory (MSFT)
and written as:

FF =

⎧⎪⎨
⎪⎩

σ1

XT
for σ1 > 0

σ1

−XC
for σ1 < 0

(1)

where XT and XC are the longitudinal tensile and
compressive strength, respectively. The stresses acting on the
fracture plane is assumed to create the fracture and contributed
to the inter-fibre failure (IFF). The fracture plane is arbitrary
from −90o to +90o (symmetry plane) about material plane.
A set of transformation equations is needed to obtain normal
and shear stresses acting on the action plane.

σn(θ) = σ2 cos
2(θ) + σ3 sin

2(θ) + 2τ23 sin(θ) cos(θ) (2)

τnt(θ) = (σ3 − σ2) sin(θ) cos(θ) + τ23(cos
2(θ)

− sin2(θ))
(3)

τnl(θ) = τ31 sin(θ) + τ21 cos(θ) (4)

The IFF functions can be written as:

A =

[(
1

R⊥
− P+

⊥ψ

R⊥ψ

)
σn(θ)

]2
+

(
τnt(θ)

R⊥⊥

)2

+

(
τnl(θ)

R⊥‖

)2

(5)

B =

(
τnt(θ)

R⊥⊥

)2

+

(
τnl(θ)

R⊥‖

)2

+

[(
P−
⊥ψ

R⊥ψ
σn(θ)

)]2
(6)

IFF =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
A+

P+
⊥ψ

R⊥ψ
σn(θ) for σn ≥ 0

√
B +

P−
⊥ψ

R⊥ψ
σn(θ) for σn < 0

(7)

The parameter ψ denotes the shear angle in action plane, whilst
P+
⊥ψ and P−

⊥ψ are the slope parameters represent internal
friction effects in Mohr-Coulomb failure criteria. Notation R⊥
indicates failure resistance normal to fibres direction, while
R⊥ψ, R⊥⊥ and R⊥‖ are the fracture resistances of the action
plane due to the shear stressing. For the sake of completeness
of supplementary equation required for IFF, publication [10]
is referred.

B. Degradation Model and Damage Evolution

Traditionally, elastic stiffness parameters are reduced when
failure is initiated. Material properties are reduced either
instantaneously (sudden) or gradually (i.e exponential) over
certain increments. However, in this analysis, material stiffness
matrix itself is reduced instead of components inside the
matrix to avoid numerical convergence problems [11].
The constitutive stress-strain relationship with the damage
parameters for a 3D orthotropic material can be written as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ13

σ23

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 G12 0 0
0 0 0 0 G13 0
0 0 0 0 0 G23

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ13

σ23

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(8)

The global damage parameters are successfully coupled with
damaged stiffness matrix, and this concept is implemented in
Lee at al. [25].

df = 1− (1− dft) (1− dfc) (9)

dm = 1− (1− dmt) (1− dmc) (10)

C11 = (1− df )C
′
11 (11)

C12 = (1− df ) (1− dm)C ′
12 (12)

C13 = (1− df ) (1− dm)C ′
13 (13)

C22 = (1− df ) (1− dm)C ′
22 (14)

C23 = (1− df ) (1− dm)C ′
23 (15)

C33 = (1− df ) (1− dm)C ′
33 (16)

G12 = (1− df ) (1− smtdmt) (1− smcdmc)G
′
12 (17)

G13 = (1− df ) (1− smtdmt) (1− smcdmc)G
′
13 (18)

G23 = (1− df ) (1− smtdmt) (1− smcdmc)G
′
23 (19)

where Cij and C ′
ij are the original and damaged material

stiffness tensors, respectively; dft, dfc, dmt, dmc are the
fibre and matrix degradation factors based on tensile and
compressive stress states, respectively. IFF interaction causes
the loss control factors smt and smc for shear stiffness. The
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Fig. 1 Geometry of single lap joint according to Riccio’s work [18]. All
units in mm

TABLE I
MECHANICAL PROPERTIES OF CFRP COMPOSITE HTA7/6376 [18]

Properties Value

Longitudinal modulus, E1 (GPa) 145
Transverse modulus, E2 (GPa) 10.3
Transverse modulus, E3 (GPa) 11.1
In-plane shear modulus, G12 (GPa) 5.3
Out-of-plane shear modulus, G13 (GPa) 5.27
Out-of-plane shear modulus, G23 (GPa) 3.95
Major Poisson’s ratio, v12 0.3
Through thickness Poisson’s ratio, v13 0.5
Through thickness Poisson’s ratio, v23 0.5
Longitudinal tensile strength, XT (MPa) 2250
Longitudinal compressive strength, XC (MPa) 1600
Transverse tensile strength, YT (MPa) 64
Transverse compressive strength, YC (MPa) 290
In-plane shear strength, S12 (MPa) 120
In-plane shear strength, S13 (MPa) 120
Out-of-plane shear strength, S23 (MPa) 50

value recommended by Abaqus are 0.9 and 0.5 for smt and
smc respectively. In this publication, an exponential function
to represent the internal damage variable is used as shown in
equation below. The function is selected based on successful
attempt made by Tserpes et al. [22] and other researchers.

di = 1− exp

[
1

m
(1− fm

i )

]
(20)

where subscript i represents internal damage notation
(ft, fc,mt,mc) and m is Weibull’s parameter.

III. NUMERICAL MODEL

A FE model is developed for CFRP bolted joint
accordance on geometry and testing setting from Riccio
[18]. Riccio conducted failure analysis of his experimental
results by adopting 3D Hashin failure criteria. Later, Santiuste
and Olmedo [15] replicated similar setting together with
Chang-Lessard criteria.

A single lap joint (SLJ) is fabricated by using HTA7/6376
CFRP composite laminates and aerospace grade Ti-6Al-4V
STA bolt and nut. The stacking sequence for the laminated
composite plate is [(0/±45/90)4]s. The geometry of SLJ and
properties of material used can be found in Fig. 1, Tables I
and II, respectively. The joint is fixed at one end and allowed
to move in the direction of applied load for the other side of
joint.

TABLE II
ELASTO-PLASTIC PROPERTIES OF TI-6AL-4V STA

Young’s modulus, E (MPa) Poisson’s ratio (-)

110000 0.29

True stress (MPa) True plastic strain (-)

950 0.0
1034 0.002
1103 0.1

x

y

z

Ux = Uy = Uz = 0

Uy = Uz = 0
Ux = d

Fig. 2 FE mesh, boundary conditions and loading direction (cross-sectional
view)
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Fig. 3 Layer configuration for FE calculation based on 8-element through
thickness, later referred as sub-laminate

A. Modelling SLJ

This exercise is aimed to capture the failure behaviour of
composite bolted joint in the case of bearing failure. Brick
elements with reduced integration (C3D8R) are used to mesh
all part in the joint. Mesh refinement is made especially
near holes to capture failure as well as to improve contact
mechanism. To reduce the computational effort, eight elements
through thickness are partitioned, and each sub-laminate
represented as one element per-thickness as illustrated in
Fig. 3. Bolt, nut and washer are modelled as single bolt
construction to reduce number of degrees of freedom.

Pre-tensioning is applied to the bolt (tightening effect) using
bolt load procedure in Abaqus. A 5-kN bolt load is used to
tighten the bolt, and then 2-mm prescribed displacement is
provided to the model for translating the joint. In general,
evaluating the bearing strength of lap-joint requires two steps;

1) Tightening torque is applied to the bolt as a bolt load
2) Bolt length has remained fix, and the load is applied

longitudinally at the free end of plate

B. Contact and Boundary Conditions

Contact interactions are modelled using the surface to
surface principle considering the linear penalty method. The
normal behaviour is characterized by the ’hard’ method, while
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Fig. 4 Load-displacement curve for viscous parameter of 0.03 and variation
of Weibull constants

the tangential behaviour is realised using classic Coulomb
friction model. As suggested by McCarthy et al. [17], a value
of 0.3 is used as friction coefficient for all contacted surfaces.

Five contact interactions are identified and referred as
bolt-top plate, top plate-bolt shank, bottom plate-bolt shank,
top plate-bottom plate and bottom plate-nut. Since no
clearance between bolt shank circumferences and hole. All
interactions are placed during initial step.

C. Viscous Regularisation

Convergence difficulty is the major drawback associated
with numerical simulation using implicit platform [23], [24].
Since the model developed here considered strain softening
and degradation of material stiffness, often the process
terminated earlier due to convergence issues. Thus, a viscous
regularisation scheme is used to improve the convergence and
implemented through an equation as follows [23]:

ḋvi =
1

η
(di − dvi ) , i = {ft, fc,mt,mc} (21)

where di and dvi are damage variables defined and regularised
damage variable, respectively. The coefficient of viscosity, η
is used to control the regularisation scheme.

For the (1 + i)th increment, the scheme can be written as:

dvi,n+1 =
Δt

η +Δt
di,n+1 +

η

η +Δt
dvi,n+1 (22)

IV. RESULT AND DISCUSSION

A. Model Validation

The FE results generated by developed PDM are compared
to experimental Load-displacement curve provided by Riccio
[18]. The aim of this assessment is to predict the ultimate
bearing load or to evaluate load bearing capacity. The SLJ
lost its load bearing capacity at approximately 12.6-kN as
shown in Fig. 4. The proposed PDM exhibited non-linearity
of load-displacement curve, as well as while damage is in
propagation.

B. Damage Mechanism

Analysis of damage around the holes is conducted to clarify
type of failure modes during failure initiation and progression
phases as displayed in Fig. 5. The value of 1.0 represents the
total failure and 0.0 for no failure occurs. The results proved
that bearing failure contributed to total failure of respective
structure.

Fig. 5d clearly indicated that the maximum value of
IFF (matrix cracking) are located at the lower plies due
to the secondary bending effect. Thus, the distribution of
matrix failure is non-uniform throughout the plate’s thickness.
Moreover, tightening torque which applied at the beginning of
analysis also increased the matrix failure as can be seen at the
top of composite plate in Fig. 5c.

At the onset of ultimate failure, fibre failure (FF) due to
compressive load is identified, and caused by movement of
bolt’s shank towards the surface of composite plates as shown
in Fig. 5b. The bottom part of the plate experienced failure
first followed by top surface.

C. Effect of Weibull’s Constants, m

A parametric study is carried out to investigate the effect
of changing Weibull’s constant m on the ultimate bearing
load. In this case, viscous regularisation parameter is remained
constant as 0.03. The results in Fig. 4 indicated that the
constants m used here are significantly affected on the slope
of degradation and not on the value of maximum failure load.
Increasing value of m lead to decrease the degradation’s slope.

D. Effect of Viscous Regularisation Parameter

Fig. 6 shows the load-displacement curve for different value
of viscous parameter, while m = 100 is maintained as
degradation constant. Increasing the viscous parameter from
0.009 to 0.05 yields to higher the magnitude of ultimate failure
load. This parameter setting helped to reduce the problem
related to convergence solution.

E. Effect of Lay-up Technique

In order to examine the effect of modelling the plies, two
type of lay-up models are considered; 8-element (sub-laminate,
as in Fig. 3) and 32-element (layer-wise (LW)) throughout
thickness of composite plate. The selection of sub-laminate
strategy is based on work of Riccio [18], however modification
is made according to McCarthy et al. [17].

It can be concluded from Fig. 7 that sub-laminate
approach performed better in predicting the ultimate
bearing load as compared with LW approach. The LW
model experienced convergence issue and high computing
time consumption. Even though LW in this study less
accurate, damage accumulation trend is more feasible when
compare to experimental curve. In general, both approaches
under-predicted the maximum bearing load obtained from
experiment.
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Fig. 5 Cross-section of composite plate at 12.6 kN and the corresponding damage variables (top plate, half view)
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meshing approach

V. CONCLUSION

In this paper, a progressive damage model of single-lap,
single protruded bolt composite joint is established. The
present failure criteria pointed out the utilisation of maximum
stress theory to predict fibre breakage and Puck’s formulation
to evaluate inter-fibre failure or matrix cracking. A 3D failure
criteria is necessary to predict damage accumulation in the
case of lap-joint in composite structures. Numerical model
developed here mimicked similar set-up with experiment
conducted by Riccio [18] except for clearance between shank
and holes. The model includes the tightening torque and also
reasonable friction coefficient to represent contact behaviour
between bolt and composite plates especially at the vicinity
of the holes. The secondary bending and pre-tension of bolt,
as well as artificial viscous parameter selected influenced
the accuracy of PDM used. The numerical results proved
successfully that the model developed is highly capable in
assessing the damage behaviour of single lap composite bolted
joint.
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