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Numerical Modeling of the Depth-Averaged Flow
Over a Hill

Anna Avramenko, Heikki Haario

Abstract—This paper reports the development and application of
a 2D1 depth-averaged model. The main goal of this contribution is to
apply the depth averaged equations to a wind park model in which
the treatment of the geometry, introduced on the mathematical model
by the mass and momentum source terms. The depth-averaged model
will be used in future to find the optimal position of wind turbines in
the wind park. κ− ε and 2D LES turbulence models were consider
in this article. 2D CFD2 simulations for one hill was done to check
the depth-averaged model in practise.
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I. INTRODUCTION

THE depth-averaged equations are obtained, as the name
suggests, by averaging the Reynolds equations over the

depth. The following conditions have to be met in order for
the depth-averaged model to be applicable:

- the vertical momentum exchange is negligible and the
vertical velocity component w is a lot smaller than the
horizontal components u and v.

- the pressure gain is linear with the depth.
The goal of this method is to reduce the elapsed time of
CFD simulations from hours to minutes. Depth-averaged

equations have been used for high Reynolds number turbulent
water flows and mostly for open channels like in the modelling
of a tidal flow in complex estuaries [6] and for water flows
in a lake or in a sea [10]. Depth-averaged equations have
been validated also for flows in a closed channel, such as in a
headbox of a paper machine [5], [4]. In simulating such flows
there normally exist many difficulties like a complex geometry,
the size of domain and different length scales. Thus it is very
difficult to have a fine mesh for a boundary layers to achieve a
sufficient resolution. Hence, depth-averaged model are a good
approach for this kind of flow simulations and sometimes it
provides even more accurate solutions than 3D [7].

The general idea of the current research is to use the depth-
averaged equations for the wind park model. The goal is to
optimize a location of wind turbines for the best results. But
3D simulation takes a lot of times that is why it was decided to
consider the 2D simulation by using the depth-averaged model.
Turbines will be taken into account in 2D simulation by using
actuator disks. But firstly, steady-state Navier-Stokes equations
was consider and the depth-averaged model was applied for
the hill. The results are presented in this paper.
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II. DEPTH-AVERAGED GOVERNING EQUATIONS

Steady-state Navier-Stokes equations for incompressible
flow are:

∇ · �υ = 0 (1)

ρ∇ · (�υ�υ) = −∇p+∇ · (¯̄τ) (2)

where the tensor ¯̄τ is given by

¯̄τ = μ

[(∇�υ +∇�υT
)− 2

3
∇ · �υI

]
, (3)

�υ = (u, v, z) is the velocity vector, p is pressure and ρ -
density. The depth-averaging will be performed along the z-
direction between the bottom level d1(x, y) and the top level
d2(x, y). The depth-averaged U(x, y) and V (x, y) velocity
components are thus defined as:

U =
1

D

d2∫
d1

udz and V =
1

D

d2∫
d1

vdz (4)

where D(x, y) = d2(x, y)−d1(x, y) is the depth of the chanel.
The geometry will be represented by long parallelepiped,

where bottom surface is rough surface (represents ground) and
top surface is straight one, that means d2(x, y) = const.

The symmetry boundary condition on the top means that

∂u

∂z
= 0,

∂v

∂z
= 0, w = 0,

∂d2
∂x

= 0,
∂d2
∂y

= 0,
∂d2
∂z

= 0

(5)
The wall boundary condition on the ground can be

expressed in the next form:

u(x, y, d1) = 0, v(x, y, d1) = 0, w(x, y, d1) = 0 (6)

Assuming that gravity is insignificant, the pressure can be
approximated as a constant in the z-direction.

1) Continuty equation: Integrating the continuty equation
along the depth, using the Leibnitz rule:

∂

∂t

b(y,t)∫
a(y,t)

f(x, y, t)dx =

b(y,t)∫
a(y,t)

∂f

∂t
dx− f(a, y, t)

∂a

∂t
+ f(b, y, t)

∂b

∂t

(7)

and the boundary conditions (5), (6), the continuty equation
becomes

ρ

(
∂

∂x
(DU) +

∂

∂y
(DV )

)
= 0 (8)
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According to this equation, mass source can be written as

ρ

(
∂U

∂x
+

∂V

∂y

)
= − ρ

D

(
∂D

∂x
U +

∂D

∂y
V

)
= Smass (9)

2) Momentum equation in the x-direction: When the mo-
mentum equation in the x-direction is integrated along the
depth z, one obtains

ρ

d2∫
d1

(
∂(uu)

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z

)
dz =

−
d2∫

d1

∂p

∂x
dz +

d2∫
d1

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
dz

(10)

The first convection term - the first term in the left-hand
side of (10) - gives

d2∫
d1

∂u2

∂x
dz =

∂

∂x

d2∫
d1

u2dz − u2(x, y, d2)
∂d2
∂x

+ u2(x, y, d1)
∂d1
∂x

(11)

The last two terms in the right-hand side equals zero because
of boundary conditions. The integration of the velocity product
u2 does not give the square of the depth-averaged velocity U .
Several authors suggest to use the Boussinesq coefficient β in
order to take into account this difference [3], [1]:

d2∫
d1

u2dz = βxxU
2D (12)

Usually authors assume that Boussinesq coefficients equal
βxx = βxy = 1, neglecting thus the dispersion effect [2].
Returning to (11), it finally gives

d2∫
d1

∂u2

∂x
dz =

∂

∂x

(
U2D

)
(13)

The pressure term in equation (10) can be written as:
d2∫

d1

∂p

∂x
dz =

∂p

∂x
D (14)

The stress tensor with the tensor notation is defined as:

τij = μ

[(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
δij

∂uk

∂xk

]
(15)

Other directional terms in (15) are handled with the help
of simulated depth-averaged velocities, except τi3, where i =
1, 2, which means the z direction.

1

D

d2∫
d1

∂τi3
∂z

dz =
1

D
[τi3(d2)− τi3(d1)], i = 1, 2 (16)

τ13 = μ
∂u1

∂z
+ μ

∂u3

∂x
= μ

∂u1

∂z
(17)

τ23 = μ
∂u2

∂z
+ μ

∂u3

∂y
= μ

∂u2

∂z
(18)

Velocity components u1 and u2 can be defined with the help
of the average velocities U1, U2, and the z-directional velocity
profile S [8]

u1(x, y, z) = U1(x, y)S(z) (19)

u2(x, y, z) = U2(x, y)S(z) (20)

S(z) =
n+ 1

n

(
1− |1− 2

D
z|n

)
(21)

n = 2 for laminar flow and n = 7 for turbulent flow. Hence,
the friction terms for x1 and x2 components can be written as

τi3 = −4μUi(n+ 1)

D2
(22)

Finaly, grouping again all terms of (10), depth-averaged
momentum equation in the x-direction can be written as

ρ

(
∂(uu)

∂x
+

∂(uv)

∂y

)
=

−∂p

∂x
+

(
∂τxx
∂x

+
∂τxy
∂y

)
+ USmass − 32μU

D2

(23)

3) Momentum equation in the y-direction: By analogy,
momentum equation in the y-direction can be presented as
follows

ρ

(
∂(uv)

∂x
+

∂(vv)

∂y

)
=

−∂p

∂y
+

(
∂τxy
∂x

+
∂τyy
∂y

)
+ V Smass − 32μV

D2

(24)

The Y momentum source becomes:

Smy = V Smass − 32μV

D2
(25)

4) Source terms for depth-averaged κ − ε model: The
simplified production terms for turbulence and its dissipation
are similar to [9] since the κ and ε equations cannot be
integrated over the height so that they assume a closed form
(25), (26).

∂k

∂t
+ U

∂k

∂x
+ V

∂k

∂y
=

∂

∂x

(
νt
σk

∂k

∂x

)
+

∂

∂y

(
νt
σk

∂k

∂y

)
+ Ph + Pkν − ε

(26)

∂ε

∂t
+ U

∂ε

∂x
+ V

∂ε

∂y
=

∂

∂x

(
νt
σε

∂ε

∂x

)
+

∂

∂y

(
νt
σε

∂ε

∂y

)
+ cε1

ε

k
Ph + Pεν − cε2

ε2

k
(27)

The production of turbulent energy due to the wall friction
for κ and ε equations is included via the production terms:

Pkν = c
− 1

2

f U3
∗/D (28)

Pεν = cεT cε2c
1
2
μ c

− 3
4

f U4
∗/D

2 (29)

where Ph = νt|�S|2, cμ = 0.09, cε1 = 1.44, cε2 = 1.92,
σk = 1, σε = 1.3, cεT = −1.8
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III. CFD SIMULATION

In the present study only one hill in the channel was
considered. The size of the hill is x ∈ [−0.585, 0.585],
y ∈ [0, 0.117]. The geometry of the hill is presented in Fig. 1.

Fig. 1. Geometry of the Hill

The size of 2D domain is x ∈ [−5, 5], y ∈ [0, 1] (Fig. 2).

Fig. 2. 2D geometry

Uniform wind velocity U = 1 m/s is set at the inlet and
a pressure outlet condition is placed at the outlet. Periodic
boundary conditions are assumed for lateral and bottom faces.
The mesh of 13 ∗ 103 elements is built for 2D model. Mass
and momentum sources was added to the equations by using
UDF functions for 2D simulations.

Fig. 3-4 present results for κ − ε model as X velocity and
static pressure.

Fig. 3. Contours of X velocity, RANS

Fig. 4. Contours of Static Pressure, RANS

The analytical solution for this model looks like:

U(x) = U(0)
D(0)

D(x)
(30)

where U(x) is the X velocity at point x, U(0) is the initial
velocity, D(0) is initial depth, D(x) is the depth at point x.
Analytical solution for static pressure can be obtained from
Bernoulli equation. Results for κ − ε model are presented in
Tables I-II.

TABLE I
RESULTS FOR RANS, X VELOCITY

X Y D(x) U(x) CFD U(x) Analytical Error
-0.4015 0.0411 0.9589 1.04332 1.04286 0.044
-0.2538 0.0827 0.9173 1.09053 1.09015 0.035

0 0.117 0.883 1.13278 1.1325 0.025

TABLE II
RESULTS FOR RANS, STATIC PRESSURE

X Y D(x) Pst CFD Pst Analytical Error
-0.4015 0.0411 0.9589 -0.043906 -0.0483 9.1
-0.2538 0.0827 0.9173 -0.104007 -0.11 5.45

0 0.117 0.883 -0.170498 -0.1676 1.7

Results for 2D LES model are shown in Fig. 5-6.

Fig. 5. Contours of X velocity, 2D LES

Fig. 6. Contours of Static Pressure, 2D LES

Comparison with the analytical solution for 2D LES model
is presented in Tables III-IV.

TABLE III
RESULTS FOR 2D LES, X VELOCITY

X Y D(x) U(x) CFD U(x) Analytical Error
-0.4015 0.0411 0.9589 1.04332 1.04286 0.044
-0.2538 0.0827 0.9173 1.09053 1.09015 0.035

0 0.117 0.883 1.13278 1.1325 0.025

As seen from Tables I-IV a difference with analytical
solution is small, the error for 2D LES is close to 5% . The
results is really satisfied taking into account the dimension was
reduced on one order. They gives confidence to continue work
in this direction.
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TABLE IV
RESULTS FOR 2D LES, STATIC PRESSURE

X Y D(x) Pst CFD Pst Analytical Error
-0.4015 0.0411 0.9589 -0.05097 -0.0536 4.9
-0.2538 0.0827 0.9173 -0.112778 -0.1154 2.27

0 0.117 0.883 -0.170498 -0.1731 1.5

IV. CONCLUSION

Replacing the full 3D flow by the depth-averaged equations
makes it possible to save both human and CPU time. The
complex 3D geometry need not be modelled nor discretized
in the pre-processing state: instead, the geometry of the hill
is only described with source terms in the depth-averaged
equations, which are then solved in a very simple and fixed
2D domain. The method is also very fast from the point of
view of a computational time, since obtaining the solution
for one 2D geometry takes only few minutes. Even though
the depth-averaged equations lose some 3D flow structures,
they are capable of presenting the general flow behaviour with
surprisingly good accuracy. Further, they speed up the design
process and help in finding the most interesting geometries,
which can be examined with 3D modelling and experimental
pilot tests in more detail. The method introduced in this paper
gives a good basis for the further development of the fast and
efficient modelling of the wind park.
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