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 
Abstract—Because of high thermal efficiency and low CO2 

emission, diesel engines are being used widely in many industrial 
fields although it makes many PM and NOx which give both human 
health and environment a negative effect. NOx regulations for diesel 
engines, however, are being strengthened and it is impossible to meet 
the emission standard without NOx reduction devices such as SCR 
(Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT 
(Lean NOx Trap). Among the NOx reduction devices, urea-SCR 
system is known as the most stable and efficient method to solve the 
problem of NOx emission. But this device has some issues associated 
with the ammonia slip phenomenon which is occurred by shortage of 
evaporation and thermolysis time, and that makes it difficult to achieve 
uniform distribution of the injected urea in front of monolith. 
Therefore, this study has focused on the mixing enhancement between 
urea and exhaust gases to enhance the efficiency of the SCR catalyst 
equipped in catalytic muffler by changing inlet gas temperature and 
spray conditions to improve the spray uniformity of the urea water 
solution. Finally, it can be found that various parameters such as inlet 
gas temperature and injector and injection angles significantly affect 
the evaporation and mixing of the urea water solution with exhaust 
gases, and therefore, optimization of these parameters are required. 
 

Keywords—Evaporation, Injection, Selective Catalytic Reduction 
(SCR), Thermolysis, UWS (Urea-Water-Solution). 

I. INTRODUCTION 

IESEL engine is being used widely in many industrial 
fields, as it has high durability and thermal efficiency and 

low CO2 emission. Compression ignition method of diesel 
engines, however, makes many particulate matter (PM) and 
nitrogen oxides (NOx) which give both human health and 
environment a negative effect in exhaust emission [1], and 
simultaneous reduction of these emissions is difficult due to 
trade-off of two compounds. Then, strengthened regulations 
such as EURO V and VI cannot be satisfied with pre-treatment 
technology. Therefore, the after treatment technologies are 
considered as a good solution to overcome the limit of 
pre-treatment technology. 

PM is reduced by 90% by diesel particulate filter (DPF) 
which has already applied to vehicles [2]. On the other hand, 
SCR system is known as the best method to reduce NOx. 
Among many types of NOx reduction technologies such as 
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LNT, LNC, and Urea-SCR, Urea-SCR is usually the famous 
one since the others have the problems such as poisoning by 
sulfur and treating dangerous gases [3]. As the evaporation and 
the thermal decomposition of urea water solution and spatial 
distribution of the reducing agent upstream the catalyst are 
crucial factors for the conversion of NOx, the dosing system 
has to ensure the proper preparation of the reducing agent at all 
operating conditions [4]. For this reason, on the basis of 
experimental result of Kim et al. [5], Birkhold et al. [6] 
conducted the numerical investigation to predict conversion 
and local distribution of the reducing agent in terms of the 
evaporation of water from a single droplet of urea water 
solution by using a rapid mixing and a diffusion limit models, 
which also examine the droplet motion and variable properties 
of the solution. Jeong et al. [7] carried out a study on effect of 
flow and NH3 non-uniformities on the DeNOx performance 
and NH3 slip in a Urea-SCR exhaust system, and compared 
multi-hole injector with one hole injector for NH3 uniformity at 
the face of SCR monolith, while Choi et al. [8] performed the 
parametric study by changing swirl angle of the twin-fluid swirl 
type nozzle with angles of 0, 45, and 90 to find NOx reduction 
ratio with the swirl angles of the nozzle. Hwang et al. [9] 
conducted experimental study to analyze SMD (sauter mean 
diameter) and evaporation characteristic of the urea droplet, 
and ammonia uniformity index and NOx conversion efficiency 
with static mixer was measured. To our knowledge, however, 
study on the evaporation and thermal decomposition of the urea 
water solution needs to be continuously investigated, as each 
Urea-SCR system have different location, Injection condition, 
and the shape of the exhaust pipe. 

In this work, therefore, temperature difference between inlet 
and outlet of exhaust pipe, NH3 concentration, and spatial 
distribution of ammonia with a variety of inlet gas temperatures 
and spray conditions such as injector angle and spray cone 
angle were evaluated with the numerical approach. In the 
following, after kinetic parameters for the thermal 
decomposition model are determined comparing present 
simulation result with experimental and numerical results from 
Kim et al. [5] and Birkhold et al. [6], respectively, each spray 
condition will be compared through the comparison of 
estimated numerical value. Finally, some concluding remarks 
are presented. 

II.  MATHEMATICAL MODELS 

A. Evaporation and Decomposition of UWS Droplets 

Urea water solution (UWS, contains 32.5wt% urea; brand 
name: AdBlue) is sprayed into the hot exhaust stream to obtain 
the ammonia for which NOx can be converted into nitrogen and 
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water [10]. The subsequent generation of NH3 in the hot 
exhaust gas proceeds in three steps [11], [12]. 
(1) Evaporation of water from UWS droplets 

 
(NH2) 2CO(aq) → (NH2) 2CO(s or ℓ) + 6.9H2O(g) (1) 
 

(2) Thermolysis of urea into ammonia and iso-cyanic acid 
gases 
 
(NH2) 2CO(s or ℓ) → NH3(g) + HNCO(g) (2) 
 

(3) Hydrolysis of iso-cyanic acid into ammonia and CO2 
gases 

 
HNCO(g) + H2O(g) → NH3 (g) + CO2 (g) (3) 

 
The decomposition mechanism of urea water solution to 

ammonia gas is illustrated in Fig. 1. In this figure, injected urea 
water solution droplets are heated up, and water in droplet 
surface evaporates first [12], subsequently, detached urea is 
turned into ammonia and iso-cyanic acid gases with 
thermolysis phenomena of urea, and finally, hydrolysis reaction 
changes generated iso-cyanic acid gas into ammonia gas by 
reacting water vapor. Since the evaporation and mixing of urea 
water solution and spatial distribution of the reducing agent 
upstream the catalyst are crucial factors for the conversion of 
NOx, the dosing system has to ensure the proper preparation of 
the reducing agent at all operating conditions. 
 

 

Fig. 1 Decomposition mechanism of urea water solution to ammonia 

B. Numerical Procedure 

For the numerical analysis of the injection of urea water 
solution, the models for evaporation and thermal 
decomposition are implemented into the commercial CFD code 
Fire 2011 which is based on the finite volume method by AVL 
[13]. In this commercial code, the fluid is treated with Eulerian 
flow, and the urea water solution droplets are examined with 
Lagrangian particle tracking approach [14], which solves the 
equation of motion for parcels of droplets with identical 
properties using the SCR-thermolysis model (SCR evaporation 
model including urea thermolysis) [13], and in this model, the 
thermolysis rate is defined by Arrhenius-type equation using 
kinetic parameters presented by Birkhold et al. [6]. Turbulence 
dispersion is defined by the Gosman-Ioannides model [15]. 
Between droplets and gas phase two-way coupling is 
considered for momentum, mass and heat transfer. For 
turbulence kinetic energy and dissipation one-way coupling is 
applied. And wall function was adopted to near the wall, 
because turbulent properties of the wall were rapidly changed. 

Hydrolysis of HNCO in (3) is considered as a homogeneous 
gas phase reaction using the coupling interface of Fire to the 
CHEMKIN chemistry solver [16]. The used spray/ 
wall-interaction model of Kuhnke [17] which are influenced by 
the thermo-physical properties of the droplets accounts for dry 
and wet as well as for cold and hot walls by using 
dimensionless number. The film on the wall is modeled as a 
two-component fluid of urea and water coupled by momentum, 
species, and energy balances to the gas phase and the walls 
[18]. Internal flow is assumed for the three-dimensional 
turbulent flow of the compressible, reacting, and unsteady state 
to retain optimum evaporation and mixing characteristics of 
urea injected in Urea-SCR system. To address the physical 
significance of the present numerical solution data obtained 
from each cross section are compared with results measured 
from area-weighted average method [13]. 

Also, the spatial distribution of the NH3 before the monolith 
entrance which affects the NOx conversion efficiency [19], is 
evaluated by introducing uniformity index of ammonia 
concentration,  , suggested by Weltens et al. [20], to confirm 

the uniform concentration distribution of reducing agent at the 
front face of the monolith as follows: 

 

1

1
1

2

n
i

i

C C

n C





                              (4) 

 

where, n , C , and iC  are number of cells, mean concentration 

at the cross section, and local concentration at cell i , 
respectively. This uniformity index has value between 0 and 1, 
the higher uniformity index; the more uniform concentration 
distribution is obtained. 

C.  Computational Grid 

Fig. 2 shows the side and isometric views of the 
computational grid system in the exhaust pipe with urea 
injector adopted in this work. Here, the angle between the 
entering and exiting exhaust pipe is 24.9 , internal diameter is 
55.5mm, and the length of the reactive region which is the 
distance between the injection point and the pipe outlet is 
380mm. The injector is installed at the pipe wall, as directed 
into the flow with 3 different angles of -3, 15, and 45, 
respectively. All the numerical solutions are obtained by using 
the commercial software AVL Fire [13]. The grid system used 
in this work is composed of approximately 423,600 cells, and 
all numerical analysis are performed by using the same grid 
system. 

D. Boundary and Injection Conditions  

It is assumed that the flow of exhaust gas entering the system 
is fully developed, and the velocity and temperature fields 
obtained from the steady-state calculation were used as the 
initial condition of unsteady state simulation to predict the 
spray behavior of the urea water solution. 

Exhaust gas passes through the exhaust pipe with mass flow 
rate of 40 g/s and inlet gas temperatures in set to 473, 523, and 
573K, respectively. Exit pressure and heat flux are defined as 1 
atm and 0 W/m2, respectively. The injector has 3 holes, through 
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