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Numerical Computation of Sturm-Liouville Problem
with Robin Boundary Condition
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Abstract—The modelling of physical phenomena, such as the
earth’s free oscillations, the vibration of strings, the interaction of
atomic particles, or the steady state flow in a bar give rise to Sturm-
Liouville (SL) eigenvalue problems. The boundary applications of
some systems like the convection-diffusion equation, electromagnetic
and heat transfer problems requires the combination of Dirichlet and
Neumann boundary conditions. Hence, the incorporation of Robin
boundary condition in the analyses of Sturm-Liouville problem. This
paper deals with the computation of the -eigenvalues and
eigenfunction of generalized Sturm-Liouville problems with Robin
boundary condition using the finite element method. Numerical
solution of classical Sturm-Liouville problem is presented. The
results show an agreement with the exact solution. High results
precision is achieved with higher number of elements.
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[. INTRODUCTION

TURM-LIOUVILLE boundary value problem or

eigenvalue problem is an important theory, which
essentially is an extension of the spectral theorem from
discretised vector spaces into continuous function spaces.
They have continued to provide new ideas and major advances
in the field of spectral Analysis solutions to separable partial
differential equations and various applications in the field of
physics.

Sturm-Liouville problem is a second-order ordinary
differential equations problem where two boundary conditions
are specified, but where no unique solution exists. These
problems may be regular or singular at each endpoint of the
underlying interval [1]. They arise throughout the field of
applied mathematics, for example, they are used to describe
the vibrational modes of various systems, such as the
vibrations of a string. These equations are common, both in
the field of classical physics (example is thermal conduction)
and quantum mechanics (example is Schrodinger Equation),
where they are used to describe processes where some
boundary value is held constant, while the system is in
operation.

The Classical Sturm-Liouville theory consists of finding the
eigensolutions (and eigenvalues) for second-order ordinary
differential equations on a finite interval with no singularities.
They commonly arise from linear partial differential equations
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(PDEs) in several space dimensions when the equations are
separable, in some coordinate systems such as cylindrical or
spherical coordinates. Some examples of these equations and
their applications are the Bessel, Legendre, and Laguerre
equations. Bessel equations arise when solving the Laplace
and Helmholtz equations by separation of wvariables in
cylindrical polar coordinates. Legendre equation arises in
solving Laplace equations in spherical polar coordinates, and
they give expressions for the spherical harmonic functions.
While the Laguerre equation arises in solutions of 3-
dimensional Schrodinger equation with an inverse-square
potential and in Gaussian integration.

In 1836-1837, Sturm and Liouville published a series of
papers on second order linear ordinary differential equations
including boundary value problems [2]. The influence of their
work was such that this subject became known as Sturm-
Liouville theory. Many thousands of papers, by
mathematicians, physicists, engineers, and others, relating to
this area have been written since then. Yet, remarkably, this
subject is an intensely active field of research today. Dozens
of papers are published on Sturm-Liouville Problems (SLP)
every year.

Reference [3] studied a procedure for the automatic
computation of the eigenvalues and the eigenfunctions of one-
dimensional linear Sturm-Liouville boundary value Eigen
problems, for both singular and nonsingular. The continuous
coefficients of a regular Sturm-Liouville problem were
approximated by a finite number of step functions. Reference
[4] obtained the asymptotic formulas for eigenvalues, eigen
functions, and the reciprocals of the eigenfunction norms for
eigenvalue problems associated with the general Sturm-
Liouville equation having regular endpoint. Reference [5]
found an expression for the derivative of an eigenvalue with
respect to a given parameter: an endpoint, a boundary
condition, a coefficient or the weight function of a Sturm-
Liouville problem. The Homotopy Analysis Method (HAM)
was applied to numerically approximate the eigenvalues of the
second and fourth-order Sturm—Liouville problems in [6]. The
eigenvalues were calculated by starting the HAM algorithm
with one initial guess.

Reference [7] considered the nth eigenvalue as a function
on the space of self-adjoint regular Sturm—Liouville problems
with positive leading coefficient and weight functions.
Reference [8] derived a method of computing accurate
approximations to the eigenvalues and Eigen functions of
regular Sturm-Liouville differential equations. The method
consists of replacing the coefficient functions of the given
problem by piecewise polynomial functions and then solving
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the resulting simplified problem. References [9]-[12] studied
the spectral of perturbed Sturm-Liouville problem and
considered the boundary-value problem which consists of the
integro-differential equation.

Robin boundary conditions, also called impedance
boundary conditions, from their application in electromagnetic
problems, or convective boundary conditions, from their
application in heat transfer problems [13] are a weighted
combination of Dirichlet boundary and Neumann boundary
conditions. The Robin boundary conditions take the form

aT +B(VT-n) =h onT (N

Robin boundary conditions are applicable to the solution of
Sturm-Liouville problems. In this work, a finite element
method (FEM) for computing the eigenvalues and
eigenfunctions of a Sturm-Lioville problem with Robin
Boundary conditions is presented and analysed.

II. THE PROBLEM FORMULATION

Consider a Sturm-Liouville boundary value problem with
Robin boundary conditions

d d
—= (P ) +awu = R ; a<x<h Q)
du
Blu(a) + B, E(ﬂ) =0 (3)
du
ayu(b) + @z (b) = 0 “

We can apply the finite element method to this problem in
the usual way by first constructing a weak form for the
equation;

PP @@ - PO o) + [ P S0
b
+ f q()u(x) v(x)dx %)
= fbAR(x)w(x)v(x)dx

The boundary conditions imply

du _ B
a(a) = Eu(a) (6)

dub_ ay b
& ® = —u® (M

Therefore, the weak form can be written in the form:

B a b du _dv
ﬁ—ZP(a)u(a)v(a) + a—zP(b)u(b)v(b) + L P(X)E(X)E(X)
b
+ f q()u(x) v(x)dx (8)
= be(x)w(x)v(x)dx

Assume that an approximate solution can be written in the
form:

n

) = ) uare ©)

=

where y, is the spike function.
Substituting (6) and (7) into (8) gives the generalized
eigenvalue problem

Au = ARu (10)

where;
A=K+M+G 11

K, M, and F are the stiffness matrix, mass matrix and load
vector respectively corresponding to Neumann conditions

b
My = LQ(X)¢j(X)¢i(x)dx (12)

b
Ry = f R();(0) by () dx (13)

The boundary term can be written as Gu. We have

%P(a)u(am(a) + EPOUG)E®)

= 5@ D U @@ (14
2 =

a; =
+ PO ;ujd),-(b)qbi(b)

(Zp@y, i=0

Bz

4 pwyy, i=n (15)
a
0 otherwise

This implies that:

%P(a) i=j=0

2

Gy = Zp(h) i=j=n (16)
2
0 otherwise

A.Heat Transfer Problem

Consider the heat transfer problem that models the
temperature distribution in a rectangular fin of length, L and
thickness, a.

The boundary value problem is given as:

aT
—V-(k-VT)+pc,,(T—Tw)E=O,
a<x<lLl

(17)

Subjected to the boundary conditions:
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< k
T(0,t) =Ty ;

pcy

VT + /?(T—Tm)>

=0 (18)

x=L

where k is the thermal conductivity; p is the density; ¢, is the
specific heat capacity, and T, is the ambient temperature.
Using the dimensionless parameters,

_ k ___xlf_at.@_T—Too 19
RO A PR S (19)
The normalized form of (17) and (18) becomes;
0’0 00 _ 20)
“oxz T T
90 PBLO
0(0,0) =0; (ﬁ+ T)L_O 21

If a periodic solution of the form @ = @ e~*1 is assumed,
(20) and (21) becomes;

320
—aﬁ+20=0 (22)
0 BLO
0(0)=0; (ﬁ“LT)L_O 23)

Equation (22) is the Sturm-Liouville eigenvalue problem
with Robin boundary conditions in (23).

Fig. 1 Rectangular Fin

B. Structural Mechanics

Fig. 2 Cantilever with Fixed Spring

Consider the cantilever with the fixed spring set in Fig. 2.
The governing differential equation is given by:

2

Ve (EA-T )+ pa =
WrpAse =

0, (24)

a<x<lLl

=0 25)

x=L

0,6)=0; (EAau+k)
u(0,t) =0 ; P u

If a periodic solution of the form U = U e~*%, the Sturm-
Liouville eigenvalue problem becomes;

E 0%U
I iy = 26
P + 22U (26)
With the Robin boundary conditions:
ou  k
U =0 ; (£+ ﬁu)L_O 7)

Using the Lagrange interpolation function, the condense
equations are given by:

Gals a2l DLI-LF e
pL|~1 k 6l1 21/lus) o
The natural frequencies are given as:
1 [6E
Ai:z Twi , i=1,2 (29)

III. ANALYSIS OF RESULTS

The free vibration equation of the heat problem has been
derived by using the Sturm-Liouville Equation. The problem
is analysed and presented. In order to analyse the mode shape,
the discretization is done at different number of element to
ascertain the accuracy of the methodology. Here, an isotropic
material of density p = 7.88kg/m’ is assumed. The specific
heat capacity is ¢, = 0.437; the thermal conductivity, k = 0.836
kW/mK and the heat transfer coefficient, 8 = 0.005 kW/m’K .
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Fig. 3 The Plot of Eigenfunction against the Dimensionless
Displacement for the First Mode at Different Number of Elements,
N =30,N=50,N=70,N=100
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Fig. 4 The Plot of Eigenfunction against the Dimensionless

Displacement for the Second Mode at Different Number of Elements,
N=30, N=50, N=70, N=100
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Fig. 5 The Plot of Eigenfunction against the Dimensionless
Displacement for the Third Mode at Different Number of Elements,
N=30, N=50, N=70, N=100
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Fig. 6 The Plot of Eigenfunction against the Dimensionless
Displacement for the Fourt Mode at Different Number of Elements,
N=30, N=50, N=70, N=100
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Fig. 7 The Plot of Eigenfunctions against the Dimensionless
Displacement for the First Four Mode when the Number of Elements,
N=100
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Fig. 8 Deviation of Eigenvalue from the Exact Solution at Different
Number of Elements, N=30, N=50, N=70, N=100

The numerical results for the first four modes are shown in
Figs. 3-6. The different modes results are presented together
with the exact solution. Each mode has results at different
number of elements from the finite element method. The two
results converge when the number of discretised elements is
relatively high.

IV. CONCLUSION

The results presented illustrate the -effectiveness and
advantage of the FEM in predicting the Eigen modes of
physical systems through the formed Sturm-Liouville.
Examples show that the method is very efficient when
compared with the exact solution. Therefore, the formulation
and solution of a Sturm-Liouville problem could be achieved
with less computation rigor.
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