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Numerical Applications of Tikhonov Regularization
for the Fourier Multiplier Operators

Fethi Soltani, Adel Almarashi, Idir Mechai

Abstract—Tikhonov regularization and reproducing kernels are the
most popular approaches to solve ill-posed problems in computational
mathematics and applications. And the Fourier multiplier operators
are an essential tool to extend some known linear transforms
in Euclidean Fourier analysis, as: Weierstrass transform, Poisson
integral, Hilbert transform, Riesz transforms. Bochner-Riesz mean
operators, partial Fourier integral, Riesz potential, Bessel potential,
etc. Using the theory of reproducing kernels. we construct a simple
and efficient representations for some class of Fourier multiplier
operators 75, on the Paley-Wiener space Hj,. In addition, we give
an error estimate formula for the approximation and obtain some
convergence results as the parameters and the independent variables
approaches zero. Furthermore, using numerical quadrature integration
rules to compute single and multiple integrals, we give numerical
examples and we write explicitly the extremal function and the
corresponding Fourier multiplier operators.

Keywords—Fourier multiplier operators, Gauss-Kronrod method
of integration, Paley-Wiener space, Tikhonov regularization.

I. INTRODUCTION

IKHONOV regularization is the most widely used

method for regularization of ill-posed problems. It has
applications to various operator equations for numerical
analysis and to many inverse problems [2], [6], [9], [10],
[12]. In particular, a simple and efficient representation can
obtained by using the theory of reproducing kernels to
both mathematical and numerical theories for bounded linear
operators in Hilbert spaces [3], [13], [14].

We first consider the space R™ with the Euclidean inner
product (.,.) and norm |y| := +/(y,y). We denote by s the
measure on R™ given by du(y) := (27) "/2dy. Furthermore,
we denote the space of measurable functions f on R™ by
LP(R™) for 1 < p < oo, such that

1/p
s = ([ 1rPant) " < .
1 ll ey = ess sup [ f(y)] < oo.
yERn

Next, we define the Fourier transform for a given function
f € LY(R™) as

Fa) = [ o9 fuuta), =R,

and the Fourier multiplier operators 7, are defined for f €
L*(R™) by
Tnf = F~(mF(f)),
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where m is a function in L>(R™). These operators have
attracted the interest of several authors because it provides
an essential tool to extend some known linear transforms
in Euclidean Fourier analysis [5], [6], [8], [11], like:
Weierstrass transform, Poisson integral, Hilbert transform,
Riesz transforms, Bochner-Riesz mean operators, partial
Fourier integral, Riesz potential, Bessel potential, etc.

Following the ideas of Matsuura et al. [2], Saitoh [5], [7]
and Yamada et al. [15], and using the theory of reproducing
kerels [1], [4], we give best approximation of the Fourier
multiplier operator T;,, on the Paley-Wiener space Hj,. More
precisely, for all > 0, g € L?(R™), the infimum

: e 112 m 2
ot {nll I, + o = T flacan .

is attained at one function [, called the extremal function,
and given by

" i(y,2) Xn(2)m(2)F (9)(2)
F gt \Wi?/ dp(z).
:)vg(y) /ﬂn € 7+ [m(z)2 w(2)
The extremal function F; satisfies the following
properties.

@ 17 gl < 5= lgllzacen)
(ii) 7lli}g" ”rl’m I",;,_q - g”l.-'—’(ﬁ‘.‘") 0
(i) lim, | Eym g = Flla, = 0.

We also give numerical experiments for some
problems and write explicitly the computed formulas
for the extremal function and the corresponding Fourier

multiplier operators. The results are presented as plots for
different values of / and .

1 <p<oo, This paper is organized as follows. In Section II, we

define and study the Fourier multiplier operators 7}, on the
Paley-Wiener spaces H},. Furthermore,we give an application
of the theory of reproducing kernels to the Tikhonov
regularization, which gives the best approximation of the
operators T),, on the Paley-Wiener spaces FHj. Section III
is devoted to present some numerical computation results (o
validate the theory. Finally, in Section IV, we summarize the
obtained results and describe future work.

II. TIKHONOV REGULARIZATION ON PALEY-WIENER
SPACE

The Fourier transform F satisfies the following properties:
(i) L' — L*°-boundedness: For all f € LYR™), F(f) €
L*°(R™) and

IF N Lee@ny < N1 Fllp @ny-
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(ii) Inversion theorem: Let f € L'(R™), such that F(f) €
LY(R™). Then

flz) = F(F(f))(—=z), ae. zeR".

(iii) Plancherel theorem: The Fourier transform F extends
uniquely to an isometric isomorphism of L?(R™) onto itself.
In particular,

IF M r2@ny = 1 fllL2n).-
Let h > 0 and x;, the function defined by

“):HX(--uh.l/h)(zi)y z=(21,...,2n) €R",
i=1

where x(_1/5,1/n) 15 the characteristic function on the interval

(—=1/h,1/h).

We define the Paley-Wiener space Hj, as
Hy, = F ' (xa L*(R™)).
The space H), satisfies
Hy, C LA(R™), F(Hy)C L'nL*(R").

We see that any element f € Hj, is represented uniquely
by a function ' € L?(R™) in the form

f=F0aF).
The space Hj, provided with the norm

”f”l!h =

For a given function m in L*(R"), we define the Fourier
multiplier operators T}, for f € L*(R™) as

Tmf =F 1(771~F(f))7

which are a bounded linear operators from /{;, into L?(R" )s
and we have

1T Sl

As application on multiplier operators,
following examples:
1) Let m be the function defined for ¢ > 0 by

Zlql

|1 Fll 2ny -

we give the

m(z) = *'e(z

r]'mf(y) / 6"'(3»!!

2) For m defined for ¢ > 0 as

Z=(F g seg@n)s

then

e ,—t.i(z)].‘(f) (z)dp(z).

H” 1
1711(»:) = ; lm, z = (;-1,...,/4”),
thus

i 3 &z .

T )= | "1z T D),

SR R 3 L U

Jor any n > 0, there exists a unique function I

e M A_al a0 o Mot~

We denote by (...}, u, forn > 0, the inner product defined
on the space Hj, by

(f: g)'},H:; = 77(f> g>H;, =+ (Tm b 2% ng)l,z(lk‘.")v

and the norm || f||,. i, = /{f, F)n, 1 -
Let n > 0 and m € L°(R"). The space (Hp, (.,
has the reproducing kernel

y oo xp(E)etErE
AIX('L$ y) = /An n b |’m( |) (")7 (1)

-)nth )

that is
(i) For all y € R™, the function =z — K, (2, y) belongs to Hj.
(ii) The reproducing property: For all f € H), and y € R",

(f? l\’h(wy))n.”:. = f(y)

Next, by using the theory of extremal function and
reproducing kernel of Hilbert space [4], [5], [6], [7] we
establish the extremal function associated to the Fourier
multiplier operators 7.

Theorem 1. Let m € L(R"). For any g € L*(R™) and
g Where the
infimum

: 2 2
nf {nlF 1By, + g = Ton I 2cemy }
is attained. Moreover, the extremal function F)

.9
R;.g(y) - (gv :[;Tl (I{h (", Yy

where K}, is the kernel given by (2.1).
Corollary 1. Let n > 0 and g € L*(R™). The extremal

is given by

) 2@ny,

Jfunction I . satisfies

—i{z—y,z)

xn(z)m(z)e
n+ |m(z)[?

Q) Fo(y) = / 9(x) [f

o(n—4)/4
(i) |Fy 4 (¥) < WHQHLZ(R")-

Gty Xn(z )_(~_)f(g)(2)

d,u(z)] dp(z).

b N \h( ym(z)F (9(
@) f(l"g)( )= n+ |m(2)]? ’
) 1F gl < 5= loluzqany

Theorem 2. Let n > 0 For even ge [Q(IR ), we have

2 F
ity.2) Xu(2)Im(2)PF(9)(2) |

(1) m ng( ) " € 17+ lm )|2 ,u( )
Xh " ]:

(i) F(TmF;) 4)(2) = L I I lml( )2 )

(i) Ton 17y o (y) = FJ,T,,,Q(I/)

(iv) ,’Erg+ ”Tm F;g o= g"L'z(lF:") =0.

Corollary 2. Let > 0. For every f € Hj,, we have
@ nlﬂf]‘,.. IFy.1,p — fllLe=@n) = 0.
(i) liI{I)l_} \Eyz g — flle, =0
n—
Remark 1. Let m € L™(R") with m +# 0; and let

g € L?*(R™). From the dominated convergence theorem we
have

a0 = [ @) [ B —

dp(z) | dp(z).
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As application of the external functions, we give the
following examples.

n

Example 1. Let > 0, and g(z) := Hx( 1), If

J=1
m(z) := e (=), t > 0, then
5 I, ¢ Hsvds
Foa(v) /(_U,n ([(;wl”l).. Wu—)dﬂ@) dp(z),
where
n
€2) =) lzl, 2=(21,...,2n)
i=1

as

(lp,(z)) du(z),

1 I conlessiuss)ng) ooy

ne“'(‘)—i—e —te(z)

""“(l]

Then
5 n/2 Hn sin(z;) cos(y;2;)
£ LN A j=1 Zj . ¥
Fyo(y) = (n) ‘/(:'!,':;),, et | @) dpa(z)-
(2)

Next, taking n — 0 yields

n % otlZi) a3 ~.} cos 2
@ =] (/ : S'"(”")my”’)d%) v

=1 #

|-

Similarly, the Fourier multiplier operator 7,,, F;; ,(y) can be

written as

etluz) f- ) ,,e""‘-’)d;z(z)
( : ,;c;)e(’(:)+1 )d,u(z),

z) (27‘,) -n/2 l—I'L f,l
( ,)e2u](.-.)l{ 1 : d[J(Z),

si\’y.:,\ (:)71.>—n/‘2 ;:ﬂ f_l (’OS(Z';‘E-)de
- /(~-x £y : 'Irfz“"(z‘brl1 — )dﬂ(3)~
h 'R

Thus

2\"”
Tnl 1’77'9(?/) . (;) ( -1 1 )n
hth

Setting 7 — 0 implies

n 1 . o o J
tori, 0= & 11 ([ el ).

=1 The “7

e_i:Jrjd;l:j)

H;l sin(z )fj’S(z iY5)

ne2té(=) 4 1

dp(z).
4)

Example 2. Let n > 0, and g(z)

n 1
m(z) = e 5

we obtain:

M) R P (f

== HIX( Ll)(.’l}j). If
4=

t > 0, then as in the Example 1,

. []} l(g]”“.l "(‘: vi)as
) W15y (tlzs [+1)%+1

d(2)) (o).

Thus

; 2\"/3 [y (e 42) 2 Ca) x(vs=s)
Ehg(y) = = / ? j‘ = o d/.l(,z)
) ey T MLy

(6)
and
h  (t|2;] +1) sin (z;) cos (y;2;
e %5 %3 YiZi) -
[‘ ,Q(J) 7]'" H </;.l 2 d~] . (7)
=1 h
On the other hand we have
/ et (f(_u)" &t ”)dﬂ(:v))d &
Ty (1) - 5 1(z),
o () 71H;’=1(f|zj|+1) 1
and therefore
o\ /2 T Sill(:')f§S(z~y~)
TnFy 4 (y) = <:> / : - dp(z2).
m*n,g - Tl% 711_1 [' |3_7|+1)2+1
8)

IT1. NUMERICAL RESULTS

In this section, we use the Gauss—Kronrod method to
integrate numerically and plot F)  (y) and T, F}) ,(y) given
in the the Examples 1 and 2, for n = 2 and dnffcrcnl values
of t and h. In the Example 1, the integrals (2), (3), (4), (5)

become, respectively:

//

_1 1 _l_ sin(z;) cos(y;z;)

,,pt(lnl*!nl)jLE t([=z1[+]=z21)
1 % etll sin (u) cos (y;u)
Foq(y) = _‘.)H %), 10
=1 \7 %
1
h

/h [13_, 2 sin(z;) cos(y;2;)

,,824\- =20 +1

Fx ( dz1dzo (9)

dz 1d32, (1 ])

1
Tnkyg(y) = 2

1
T’n‘l‘F,O,g( ) = ‘_‘2_

1
(/ wdu) L(12)
72 4 % “

j=1
Similarly, for the example 2. we have

2, (sl ) sin(es) coelus=;)
- _’/_, /__ P2 D7
h
R w sin(u) cos uw
F,@) = H (/ (tlul+1) ( ) cos(y; )d ) (14)
=1\ %
sin(=5) con(vs25)

» h ﬂz
TnFg(¥) = [1/ 71(L121I+1)’(tlzo|(~1)7+1‘L1d32' s

Fr;,g(y) dzidza, (13)

IV. CONCLUSION

We investigated the Tikhonov regularization method, and
we constructed a simple and efficient representations for
some class of Fourier multiplier operators. We gave an error
estimates formulas for the approximation and we obtained
some convergence as the variable » — 07. Finally, we
tested the obtained results numerically by using numerical
quadrature integration rules to compute the single and double
integrals corresponding to the extremal function and the
Fourier multiplier operators. The same results obtained in
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03,
0.25-.
02|
0.15-)
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0.05-L

-0.05-
]

(a) h = 1/400 (by h = 1/150

03—

0251~

020

0.15-,

0.1~

0.05-L

3 =<
< ~
4 »(// 1
5 0
(c) h=1/60 (dy h =1/7

(e) h=1/2

Fig. 1 Extremal function F{" /(y) given by (9) for £ =1
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[PPSR S T TR (R« SURE SO SO N Y S S J Y SR SR P S .

(e) h=1/9 (N h=1/20

Fig. 2 Extremal function F§ (y) given by (10) for £ = 1
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[PPSR S T TR (R« SURE SO SO N Y S S J Y SR SR P S .

por-— 78 e

50 s o
@h=1 by h=1/4

g

5 0
(dyh=1/15

LR 5 0
(e h=1/20 (f)y h =1/100

Fig. 3 Extremal function Fiy' (y) given by (10) for ¢ = 10 u
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el LoV~

et

[P S N

(b) h =1/150

(a) h = 1/400

) h=1/7

(c) h=1/60

Hh=1

(e) h=1/2

Fig. 4 Fourier multiplier operators T, l"l'_g(y) given by (11)
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5 0
(ayh =1 (by h = 1/5

) h=1/8 (dyh=1/15

(e) h=1/30 () h =1/100

Fig. 5 Fourier multiplier operators T}y, I-]T__,,(!/J given by (12)
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‘ 3 o = ¥ /
// 4 - 1

(ayh=1 (byh=1/4

(e) h=1/25 Hh=1/35

Fig. 6 Extremal function F'¥ (y) given by (13) for ¢ = 1

138



el LoV~

et

[P S N

(by h =1/4

(ayh=1

(dyh=1/15

(c)h=1/8

(f) = 1/100

(e) h=1/30

.g(y) given by (14) for ¢

.
).

Fig. 7 Extremal function [}
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[ RPN SR T TR TR ORI SO

(ayh=1 (byh=1/4

c)h=1/8 (dyh=1/20

> S '//‘2

4 T
5 0

(e) h=1/30 () h = 1/100

Fig. 8 Extremal function FJ

,,‘g(y) given by (14) for t = 10—7
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[PPSR S T TR (R« SURE SO SO N Y S S J Y SR SR P S .

“;Lo
(e) h = 1/30 (f)y = 1/100

Fig. 9 Extremal function Fj (y) given by (14) for £ = 10
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[ RPN SR T TR TR ORI SO

~
5 0
(by h=1/4

5- L]
() h=1/15

5§ ©
(dy h =1/35

Fig. 10 Fourier multiplier operators T I ;(y) given by (15) for = 1

the case of the Fourier transform can be expanded for
different transformations such as: Hartley transform, Hankel
transform,and Dunkl transform.
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