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Abstract—In this study, the hydrogen transport phenomenasn wdydrogen concentrations) are often based on thevkmitetails

numerically evaluated by using hydrogen-enhancedalied
plasticity (HELP) mechanisms. Two dominant govegnaguations,
namely, the hydrogen transport model and the elalsistic model,
were introduced. In addition, the implicitly fornatiéd equations of
the governing equations were implemented into ABARQUMAT

of the crack tip’s elasto-plastic state.

[14] proposed a finite element (FE) model to dentras the
effect of hydrostatic stress and trapping phenomamahe
hydrogen distribution in plastically deformed sgedBased on

their model, Krom et al. [15] proposed a formulatifor
achieving hydrogen balance by considering a stati factor
in the hydrogen transport equation. [2], [16] anddémaeili et

Keywords—Hydrogen-enhanced localized plasticity (HELP),al. [17] used an FE scheme that differed from tfistrom et al.
Hydrogen embrittlement, Hydrogen transport analy#i8AQUS [15] and applied the Galerkin method in a 3D sirtiafato
UMAT, Finite element method (FEM). reconstruct the model of [14]. Taha and Sofron|s¢diewed

the progress by analyzing the material mechanigla&biour at
|. INTRODUCTION a crack tip or round notch with that of hydrogefiigiion.
S the demand for hydrogen energy has continuously However, the developed code is based on in-house aod
increased in recent decades, a design for safet on general-purpose FE programs. Consideringaisible
high-pressure hydrogen transport/storage systemegisired. needs for numerical simulations of hydrogen-reldeldire in
The reservoirs and pipeline in hydrogen systemsailshbe the near future, implementation of hydrogen transpo
designed to endure high levels of internal presg¢mae than equations in general-purpose FE programs is désirab
70 MPa). Under such circumstances, hydrogen-inducedHence, the present paper describes the implememtaitithe
material degradation (e.g. hydrogen embrittlemelsmage hydrogen transport equation into the general-pep&&
initiation/growth, etc.) commonly occurs [1]-[4]n@& these program ABAQUS. The user-defined material subrautin
phenomena can cause catastrophic failure of hydroged MAT was developed in order to calculate the imaott
structures. parameters related to hydrogen embrittlement lfiydrostatic

Recently, several mechanisms for the hydrogdriteerment stress and plastic strain). Moreover, in order atidate the
have been proposed. Three types of mechanismsrafgpba developed UMAT, the simulated results were compavit
viable: stress-induced hydride formulation/cleavdgfk [6], the results in the literature.
hydrogen-induced decohesion [7], [8] and hydrogemaeced
localized plasticity (HELP) [9]-[13].

According to the HELP theory, the presence afrbgen in a
solid solution increases the dislocation motionjolvhn turn . . . .
increases the amount of plastic deformation thauscin a According to previous _stud|es by Sofr_oms an_d _MCM_BQ
localized region adjacent to the fracture zone [2]. [14], hydrogen resides either at normal interdtiagtice sites

One possible way through which the HELP mechaniam ¢ (NILS) or at reversible trapping sites generated pitgstic
bring about macroscopic material failure is througlQeformatlon [4]. The two populations are alwaysduilibrium

hydrogen-induced cracking. Crack tip phenomena iﬂccordingto Oriani’s theory [7], [8]:

hydrogen-induced cracking (e.g. hydrogen concentrs)}
_ar :_BL ex % (_‘]_)
1-6 1-6 RT

Wheref, andfr are the occupancies of the NILS and trapping
sites, respectively\; is the trap binding energR is the gas
constant equal to 8.31:ndol™K™, and T is the absolute
temperature. The hydrogen concentration per uriiree in
trapping site<Cy can be written as

user-defined subroutines. The simulation resultsewemmpared to
published results to validate the proposed method.

Il. HYDROGENDIFFUSIONMODEL

A.Hydrogen Transport Model
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Where a is the number of sites per trap aNy, which is a

hand, Egs. (7) and Y&uggest that calculation the plastic

function of the local effective plastic strais the trap density strains requiredetermining th hydrogen concentration.

measured in number of traps per unit volume. Thardgen
concentration in NILEC, can beexpresse as

CL=6. 8N, (3
Whereg is the number of NILS per solve atom and Nis the
number of solvent lattice atoms per unit latticéuwee. If the
available number of trapping sites per unit vol, aNy, is
smaller tharthe available NILS per unit volur, SN, then

Ny =2 (4)

Where N, (=6.0232x18° atoms/mol) isAvogadro’s number
andV)y, is the molar volume of the host lattice measuradhiits
of volume per lattice mole.

Hydrogen conservation in any arbitrary material unoé
combined with Egs. (2)— (4)ields the governing equation f
transient hydrogen diffusion accounting for trapping ¢
hydrostatic drift:

o€
DL % op oo, +D[—DLCLV—” Dakkj + LR (5)
Dy Ot 3RT de, ot
WhereD, is the hydrogediffusion constant through NILS at
D¢ is an effective diffusion constant given

=D (6)

Dest
1+L
)

Here, Vy is the partial molar volume of hydrogen in s
solution andsy is the hydrostatic stress which induces a i
for diffusion through the NILS.

B. Constitutive Model

In the presence of hydrogethe hydroge-induced lattice
deformation should be modellechrough the dilatation:
distortion that accompanies the introduction of byelroger
solutes into the lattice. In order to incorpordie tydroge-
induced lattice deformation in thefinitesimal strai, the total
strain rate should be calculated from
& =&5 + &P + & (7)

The terms in the above equatiffrom left to right denote
the total strain rate, elastic strain rapdastic strain rate, and
hydrogen-induced strain rate respectivel. The
hydrogen-induced strain raite purely dilatational and is give
by
g=l Ml o ®)

33+ (- My My
Where c is thetotal hydrogen concentration (in NILS a
trapping sites) measured in hydrogen atoms peesblatom
V4 is the hydrogen partial molar volume in solut andVy, is
the molar volume of host metal.

As the hydrogen-induced straiate is purely dilatational,
does not affect plastic strain and material hamg

It is evident that the hydrogen diffusion is fullgupled with
the stress analysis. For example, Eqsaff¥) (6) indicate that
the calculation of the hydrogen distribution is plad to the
fields of the hydrostatic stress and effectiveistran the othe

The inelastic strain rate is calculateby using the
Bodner-Partom elasto-(vis§glastic model [18] as follows:

2n
3S.
&P =Dy exp —l(iJ ﬁ C)]
2| Oy Oyt
2=2,-(2;- Zo)exp( mjaij dsijp) (10)

WhereDy is the assumed maximum plastic strain rZ is the
total hardening variablegndn is the material parameter that
controls rate sensitivityZ, andZ; are the initial and saturated
values of the isotropic hardening variable, redgpelyi; mis the
rate of isotropic hardening.

I1l.  FINITE ELEMENT IMPLEMENTATION TOABAQUS

A.Numerical Algorithm of ABAQUS UMAT

In the present study, the aforementioned equatwere
transformed as an implicit form and implementecd ithe
ABAQUS UMAT subroutine. In the UMAT subroutine, t
hydrogeninduced strain rate first calculated using Egs. (7)—
(11). The hydrogen concentrationthen analyzed using Egs.
(1)—(6).

In the firststep, the hydrostatic stress and effective pl
strain are calculated. Inthe next step, the hydrogen
concentration is simultaneously calculatFrom the calculated
results, the stresstrain material nonlinear behaur and
hydrogen concentration distribution can be obta

The numerical algorithm of the UMAT subroutine os/n
in Fig. 1.
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Fig. 2 (a) Description of the boundary and in conditions for the
coupled diffusion and elastjgastic problem at rounded-notch bend
specimen under small scale yieldicanditions [4] and (b) FE moc

B. Finite Element Modd

In order to validate the developed UMAT subroutioe
hydrogen diffusion simulations, thanalyzed resultswere
compared with publishedesults [4]. Fig. 2(a) shows tl
geometries of theest specimen. This is trounded notch bend
specimen. Fig. 2(b) shws the FE model cthe test specimen.
Fournode plane strain elements for the coul
temperaturatisplacement analysis (CPE4T in ABAQlwere
used. The numbers of elements and nwere 1880 and 2418,
respectively.

The yield strengths of low strengthestis 250 MPa. The
elastic modulus is 207 GPa, aRdisson’sratio is 0.3.

C.Boundary and Loading Conditions

For the boundary conditions related to the hydro
concentration, two types are introduced

The first type is anénvironmental embrittleme’ condition
(BC Type 1) which assumethat the specimen is under
uniform NILS hydrogen concentratidfy = C, at all times on
the boundary of the specimen. The trapping concentration
C; follows from the NILS population through Egs. —(4).

The second type igriternal embrittlemer (BC Type I1). At
time t = 0, hydrogen is present ihott the NILS and the
trapping sites, and the two populatidbs= C, andC; are in
equilibrium according to Egs. (1) 4)( Fort > 0, all external
surfaces, including those of the cracknotct, are assumed to
be insulated. For all cases, the initial conceintneC, was set to
2.084 x 16" atom/nf.

The loading conditions for theunded notch bend specim
was performed by prescribing constant displacerrate until

loading was completea=t)). The prescribed displacement r
was 0.002mm/s. At times greater thd, the loading
displacements were held constant and hydrogen sibffi
continued under fixed held displacemel

IV.  NUMERICAL EXAMPLES AND DISCUSSIONS

The variations inthe normalized concentrati C /Cy in
NILS andC+/C, in trapping siteswith the normalized distance
are shown in Fig. 3 for theunded notch bend specin with
BC Type | (constant concentration condition) and B@e Il
(zerohydrogen flux). The distana (from the notch root) was
normalized with respect to tlinitial notch radiusry. In this
figure, the results fot = t; indicate variation ofC /C, and
C;/Cy at timet = t;, and the results for three different caset;
(i.e.ty =17 s, 40 s, 107 gre shown. As shown in this figu
the FE analysis resulegyreed well wit published results.

V. CONCLUDING REMARKS

In the present stugdythe hydrogen transport phenomel
was computationally analyzed ' the basis of the HELP
mechanism. Wo dominant governing equatic (i.e. the
hydrogen transport model and the el-plastic model) were
adopted. Moreover, the aforementioned modewere

transformed into the implicit form a implemented into an
ABAQUS UMAT userdefined subroutine. The proposed
UMAT was validated bgomparison wittpublished results for
the hydrogen transport of throunded notch bend specimen.
The analysis resultsvere confirmed to coincidwell with
published results.

1.4

Taha A. and Sofronis P.(2001)
----- Present Study

r/r, (a)

Taha A. and Sofronis P.(2001)
----- Present Study

C,/C,

92



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:6, No:1, 2012

1.4 T T T

Taha A. and Sofronis P.(2001)

_____ Present Study

vir, (C)

2 T T T

Taha A. and Sofronis P.(2001)
————— Present Study

C,/C,

0.2 1 I 1

(d)
Fig. 3 Variations of the normalized concentratiathvthe
normalized distance for the boundary problem wi€ Bype I: (a)
C/Cyin NILS and (b)C+/Cy in trapping sites and with BC Type II: (c)
C./Cyin NILS and (d)C{/Cy in trapping sites
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