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Abstract—In this article two algorithms, one based on variation 
iteration method and the other on Adomian's decomposition method, 
are developed to find the numerical solution of an initial value 
problem involving the nonlinear integro-differential equation 

, , ,  

where R is a nonlinear operator that contains partial derivatives with 
respect to x. Special cases of the integro-differential equation are 
solved using the algorithms. The numerical solutions are compared 
with analytical solutions. The results show that these two methods are 
efficient and accurate with only two or three iterations 
 

Keywords—variation iteration method, decomposition method, 
nonlinear integro-differential equations 

I. INTRODUCTION 
The equation  

, , ,              1  

is an example of general nonlinear integro-differential 
equations defined on a Hilbert space. In the equation  is a 
nonlinear operator that contains partial derivatives with 
respect to , and  is an inhomogeneous term. Of particular 
interest is the following special case 

, , , ,
                      

 

0 1, 0 .                      2  
with the initial condition  

, 0                                                 3  
The problem arises in the theory of one-dimensional 
viscoelasticity [8] – [10]. It is also a special model for one-
dimensional heat flow in materials with memory [5]. 

A numerical solution to the nonlinear problem given by (2) 
and (3) was obtained using Galerkin's method [11]. In this 
paper, the variation iteration method and decomposition 
method are described and applied to compute numerical 
solutions to (2) and (3). It will be shown that the algorithms 
are efficient and accurate with only two or three iterations.  

The article has been organized as follows: In Section 2, the 
application of variation iteration method to solve the nonlinear 
problem (2) and (3) is discussed; in Section 3, an improved 
decomposition algorithm is presented to find numerical 
solutions; and in Section 4 the two algorithms are applied to  
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examples, and the numerical results with analytical solutions 
are compared. 

II. THE VARIATION ITERATION METHOD   
The variation iteration method (VIM) [6]–[7] was proposed 

by He to solve nonlinear differential equations using an 
iterative formula. In this section a VIM algorithm is developed 
to solve the nonlinear integro-differential equations (1) 

Applying the variation iteration method to (1), we construct 
the following iteration formula: 

, ,  

λ τ
∂

∂τ
,   , , d  

(4) 
where λ is a general Lagrangian multiplier, which can be 
identified optimally via the variational theory, and  is 
considered as a restricted variation [7], that is,  =0. 

By taking variation with respect to  and noticing that 
0 it can be derived that 
, ,  

λ τ
∂

∂τ
,   , , d  

, λ τ , | λ τ , 0. 

This yields the stationary conditions: 
λ τ 0, and 1 λ τ | =0. 

Therefore, the Lagrangian multiplier λ τ 1. 
    Substituting the identified multiplier into (4) the following 
iteration formula is obtained: 

, ,  
∂
∂τ ,   , , d ,   5  

for 0 with ,  chosen to be , , 0
. 

    Integration by parts yields  
∂

∂τ
, , , 0  

and, therefore, a simpler version of the iteration formula (5) 
can be obtained   

, , 0  

, , d , 0     6  

    To further simplify the iteration formula, it is observed that  
, 0 , 0  

, , d , 0 , 0  

, 0 , 0  
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, , d , 0 , 0  

 
It implies by induction that , 0 , 0  for any 
positive integer n, and therefore, 

, , 0  

, , d , 0      7  

    Applying iteration formula (7) to (2) with initial condition 
(3) leads to the following theorem. 
 
Theorem 2.1 The solution to the integro-differential equation 
(2) with initial condition (3) can be determined by the 
iteration formula 

,  

, ,   

III. THE DECOMPOSITION METHOD   
In this section an algorithm based on the Adomian’s 

decomposition method (ADM) [1], [2], [4] is developed to 
solve the integro-differential equation (1): 

, , ,   

with the initial condition (3): , 0 . 
By the decomposition algorithm, a series expansion is 

assumed for  given by 

, , , , , . 

(8) 
Integrate both sides of (1) from 0 to  to obtain 

, , 0 , ,     9  

Applying (9) to the integro-differential equation (2) with the 
initial condition (3) yields  

, , 0  

, ,   

(10) 
In series (8) let , , 0 , , and thus 

it follows from (10) and (8) that 
, , ,  

, ,

,  

, , ,

 
where 

, , , ,

                                                            11  

Note that ’s 0,1,2,  are specially generated 
decomposition polynomials that depend only on components 
from , , , to . To be more specific, we define the 

order of the component to be ,  and ·

to be . Then the decomposition polynomial 
 depends upon the components with order 0,   depends 

upon components with order 1, etc..  
A special case ξ ξ  can be used to better explain the 

construction of the decomposition polynomial . It is derived 
from (11) that 

, , ,  

, , ,  

, , ,  

2 2  

2 2  
Therefore, 

                                      

2                                                    

2      

2        12  

 

Notice that  is determined by the component  of 

order 0,  is determined by the component  
of order 1, , etc.. 
    The above analysis leads to the following theorem: 
 
Theorem 3.1 The solution to the integro-differential equation 
(2) and (3) can be determined by the series (8) with  

0,1,2,  given by the iterations  

, , 0 ,                     

, , ,  

, , ,  

 

   , ,   

for 1,2, , where  ( 0,1,2,  are the terms of 
expansion (11). 
 

For the series solution in decomposition algorithm to 
converge, two hypotheses are needed, [3]: The nonlinear 
equation has a series solution such that ∑ 1 | |
∞ for small , and  the nonlinear operator  can be developed 
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in series ∑ . These two hypotheses are 
usually satisfied in many physical problems. 

IV. EXAMPLES 
In this section different forms of the kernel ·  and the 

nonlinear function ·  [11] in (2) are considered. The 
inhomogeneous term ,  and initial condition  in (3) 
are also chosen appropriately so that exact solutions are 
available. The exact solutions are then compared with the 
numerical solutions derived through the variation iteration 
method and decomposition algorithm. 
 
Example 1: In this example, , ,  

, 2 , 
and the initial condition , 0 .  With these choices,  
(2) and (3) become 

, ,  

2 , 
 , 0 . 

The exact solution for this problem is , . 
The variation iteration formula in Theorem 2.1 for the 

example takes the form 
,  

,   

2                13  

with , . 
To find the series solution (8) of the decomposition method, 

the first terms ,  0,1,2,3  in Theorem 3.1 are 
expressed in terms of the decomposition polynomial 's in 
(12). 

  , 2  

,  ,                         

, 2  ,  

        , 2

 ,                                      14  

 
The series solution (8) of the problem (2) and (3) can then be 
approximated by 

, , , ,  
 
Table 1 shows the errors between the exact solution and 

numerical solutions. The numerical error | | 
results from using three terms of the decomposition method, 
and the error | | from two iterations of variation 
iteration method both computed at 0.01 and 0.0, 0.2, 

, 1.0.  

TABLE I 
ERROR COMPARISON FOR EXAMPLE 1 

x | | | | 

0.0 1.9898e-02 1.9928e-02 
0.2 1.6291e-02 1.6296e-02 
0.4 1.3339e-02 1.3339e-02 
0.6 1.0921e-02 1.0921e-02 
0.8 8.9413e-03 8.9415e-03 
1.0 7.3206e-03 7.3207e-03 

 
The table indicates that the two methods both have very 

reasonable accuracy. Furthermore, Figs. 1 and 2 also show 
good agreement between the graphs of the exact solution and 
those of the numerical solutions of VIM and ADM. 

  

 
Fig. 1 Exact solution (curve) vs VIM solution (discrete circles) 

 

 
Fig. 2 Exact solution (curve) vs ADM solution (discrete crosses) 

 
Example 2: In this example we choose , 

, and , cos ¼ sin 2 cos 2
sin 2 cos 2  in (2), and let the initial 

condition , 0 sin . 
    The exact solution is , sin  for these choices. 
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The variation iteration formula in Theorem 2.1 for the 
example takes the form 

, sin ,  

cos ¼ sin 2 cos2  

sin 2 cos 2                                                    15  
with , sin . 
    The 's in the decomposition method can be determined by 

, sin cos ¼ sin 2  

cos 2 sin 2 cos 2  

,                  

, 2   

                                           (16)            
We let 0.3, and use three iterations of variation iteration 
method and two terms of decomposition approximation to 
compute the numerical solutions of the problems (2) and (3). 
The errors of these solutions compared with the exact solution 
are listed in Table 2. 
    In the table very reasonable accuracy is reached by both 
methods. When  approaches 1.0, the decomposition method 
is slightly better than the variation iteration method. We can 
also observe this phenomenon as we compare the graphs in 
Figs. 3 and 4.  

TABLE II 
ERROR COMPARISON FOR EXAMPLE 1 

x | | | | 

0.0 6.7232e-03 4.5787e-04 
0.2 3.5375e-03 1.3564e-03 
0.4 1.3665e-04 1.7970e-03 
0.6 4.2055e-03 1.6572e-03 
0.8 8.3884e-03 1.0200e-03 
1.0 1.2062e-03 1.4095e-04 

 

 
Fig. 3 Exact solution (curve) vs VIM solution (discrete circles) 

 

 
Fig. 4 Exact solution (curve) vs ADM solution (discrete crosses) 

V. CONCLUSION 
The variation iteration and decomposition algorithms are 

both capable of solving nonlinear equations. Indeed, the 
examples show that the error between the exact solution and 
the numerical solutions obtained by these two algorithms are 
small, and this was achieved using only two or three iterations. 
It should also be remarked that the graphs drawn using VIM 
and ADM are also in good agreement with those of the exact 
solutions. The two methods involve reasonable amount of 
computations, which is handled by Maple. 
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