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Novel delay-dependent stability criteria for
uncertain discrete-time stochastic neural networks

with time-varying delays
Mengzhuo Luo and Shouming Zhong

Abstract—This paper investigates the problem of exponential sta-
bility for a class of uncertain discrete-time stochastic neural network
with time-varying delays. By constructing a suitable Lyapunov-
Krasovskii functional, combining the stochastic stability theory, the
free-weighting matrix method, a delay-dependent exponential stabil-
ity criteria is obtained in term of LMIs. Compared with some previous
results, the new conditions obtain in this paper are less conservative.
Finally, two numerical examples are exploited to show the usefulness
of the results derived.

Keywords—Delay-dependent stability; Neural networks; Time-
varying delay; Linear matrix inequality(LMI).

I. INTRODUCTION

RECENTLY, the dynamics of neural networks have been
extensively studied, this is mainly to the great poten-

tial applications in varies areas such as signal processing,
pattern recoganization, static image processing, associative
memory and combinatorial optimization [1,2] As is know
to all, dynamical behaviors of neural networks are the key
to the applications, and the achieved applications heavily
depend on the dynamic behaviors of the equilibrium point
for neural network, therefore, stability is one of the most
important issues related to such behavior. In practice, time
delay is frequently encountered in neural networks. Due to
the finite speed of information processing the existence of the
delays frequently causes oscillation, divergence, or instability
in neural networks.In recent years, the stability problem of
time-delay neural networks have become a topic of great the-
oretic and practical importance[3-7,27,29-30]. This issue has
gained increasing interest in applications to signal, artificial
intelligence.

It is worth pointing out that most neural networks are con-
cerned with continuous-time cases. Since discrete-time neural
networks play a more important role than their continuous-
time counterparts in today’s digital life, moreover, in imple-
menting and applications of neural networks discrete-time neu-
ral networks also take a more crucial key than their continuous-
time counterparts in that discrete-time analog is often establish
to investigate the dynamical characteristics with respect to
digital signal transmission [8]. Therefore, both analysis and
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synthesis problem for discrete-time neural networks have been
extensively studied and a great number of important results
have been reported in the literature[9-14,28] and the references
therein.

It is worth noting that the synaptic transmission is a noisy
process brought on by random fluctuations from the release
of neurotransmitters and other probabilistic causes in real
nerves systems. So the stochastic disturbance is probably
the main resource of the performance degradation of the
implemented neural networks. Therefore, the stability for
stochastic neural networks with delay have attracted increasing
interests and some results related to stochastic disturbances
have been published [16-18,20-23,26,31]. In [16] authors have
studied the robust exponential stability problem for discrete-
time stochastic neural networks, where the LMI approach was
developed and a weak assumption on the activation function
was considered. Meantime, in [22] authors combined the free-
weighting matrix method and established the delay-dependent
stability conditions, which proved to be less conservative
than [16]. Recently, [17] presented several improved delay-
dependent stability results for discrete-time stochastic neural
networks by delay partitioning ideal, but it is our observation
that there still exists room for further improvement by con-
structing rational Lyapunov functionals which motivates the
present study.

In this paper, the problem of stability analysis for un-
certain discrete-time stochastic neural networks with time-
varying delays is investigated. By using the discrete-time
Jensen inequality, free-weighting matrix method, some suffi-
cient conditions are established to ensure the stochastic neural
networks are globally exponential stability in the mean square,
which proved to be less conservative than previous results.
Finally, two numerical examples are given to demonstrate the
effectiveness of the proposed results.

II. PROBLEM STATEMENT

Consider the following uncertain discrete-time stochastic
neural networks (DSNNs) with time-varying delays described
by

𝑥 (𝑘 + 1) = 𝐶 (𝑘)𝑥 (𝑘) +𝐴 (𝑘) 𝑓 (𝑥 (𝑘))
+𝐵 (𝑘) 𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))
+𝛿 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))𝜔 (𝑘)

(1)

where 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑘)]𝑇 ∈ ℜ𝑛 is the neuron
state vector, 𝑓(𝑥(⋅)) ∈ ℜ𝑛, denotes the neuron activation
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function, 𝐶 (𝑘) = 𝐶 + Δ𝐶 (𝑘), 𝐴 (𝑘) = 𝐴 + Δ𝐴 (𝑘),
𝐵 (𝑘) = 𝐵+Δ𝐵 (𝑘), 𝐴,𝐵 ∈ ℜ𝑛×𝑛 are the connection weight
matrix and the delayed connection weight matrix, respectively.
𝐶 = 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑛) with ∣𝑐𝑖∣ < 1, describes the rate with
which the ith neuron will reset its potential state in isolation
when disconnected from the networks and external inputs.
𝐶 (𝑘), 𝐴 (𝑘), 𝐵 (𝑘) are the uncertainties of system matrices
of the form

[𝐶 (𝑘) , 𝐴 (𝑘) , 𝐵 (𝑘)] = 𝐻𝐹 (𝑘) [𝑁1, 𝑁2, 𝑁3] (2)

where 𝐻 and 𝑁𝑖 are known real constant matrices of appro-
priate dimensions, 𝐹 (𝑘) is the unknown time-varying matrix
function satisfying 𝐹𝑇 (𝑘)𝐹 (𝑘) ≤ 𝐼, ∀𝑘 ∈ 𝑁+, then the
system (1) can be rewritten as

𝑥 (𝑘 + 1) = 𝐶𝑥 (𝑘) +𝐴𝑓 (𝑥 (𝑘)) +𝐵𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))
+𝐻𝑞1 (𝑘) + 𝛿 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))𝜔 (𝑘)

𝑞1 (𝑘) = 𝐹 (𝑘) 𝑝1 (𝑘)
𝑝1 (𝑘) = 𝑁1𝑥 (𝑘) +𝑁2𝑓 (𝑥 (𝑘)) +𝑁3𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))

(3)
𝜏(𝑘) is time-varying delay and satisfies

0 < 𝜏1 ≤ 𝜏 (𝑘) ≤ 𝜏2 (4)

where 𝜏1 and 𝜏2 are positive integers representing the lower
and upper bounds of the time-varying delay. Now we introduce

the 𝜏0 = 𝜏2+𝜏1
2 +

min{(−1)𝜏2+𝜏1 ,0}
2 , obviously, 𝜏 (𝑘) ∈ [𝜏1, 𝜏0]

or 𝜏 (𝑘) ∈ (𝜏0, 𝜏2]. So from this partition, our conditions
should be considered as two cases.

In the DSNNs (3), 𝛿 (⋅, ⋅, ⋅) : ℜ × ℜ𝑛 × ℜ𝑛 → ℜ𝑛 is the
noise intensity function vector, 𝜔 (𝑘) is scalar Wiener process
with

𝐸 [𝜔 (𝑘)] = 0 𝐸
[
𝜔2 (𝑘)

]
= 1 𝐸 [𝜔 (𝑖)𝜔 (𝑗)] = 0 𝑖 ∕= 𝑗

(5)
In order to obtain our main results, we introduce the

following assumptions and definition.
Assumption 1. For any 𝑥, 𝑦 ∈ 𝑅, 𝑥 ∕= 𝑦,

𝑙−𝑖 ≤ 𝑓𝑖(𝑥)−𝑓𝑖(𝑦)
𝑥−𝑦

≤ 𝑙+𝑖 (6)

where 𝑙−𝑖 , 𝑙+𝑖 , are some constants.
Remark 1. The above assumption on the activation function
was originally proposed in [9], and wildly used in many
papers, see [18,20,21].
Assumption 2. The DSNNs in (3), the activation function
satisfies 𝑓 (0) ≡ 0.

According to the Assumption 2, it is obviously that 𝑥 (𝑘) =
0 is a trivial solution of the DSNNs in (3).
Assumption 3. There exists a constant matrix 𝐺 ≥ 0, and is
assumed to satisfy
𝛿𝑇 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) 𝛿 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))

≤
[

𝑥 (𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

]𝑇
𝐺

[
𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))

]

where 𝐺 =

[
𝐺1 𝐺2

𝐺3

]
.

Throughout the letter, we shall adopt the following defini-
tion.
Definition 1. The discrete-time stochastic neural network with
time-varying delays (3) is said to be exponential stable in the

mean square if there exist two scalars 𝛼 > 0 and 0 < 𝛽 < 1
such that

𝐸
[
∥𝑥 (𝑘)∥2

]
≤ 𝛼𝛽𝑘 sup

−𝜏2≤𝑠≤0
𝐸
[
∥𝑥 (𝑠)∥2

]
(7)

The following Lemmas are needed to develop our main
result.
Lemma 1.[12] For any constant matrix 𝑀 ∈ 𝑅𝑛×𝑛,𝑀 =
𝑀𝑇 > 0, integer 𝑟2 ≥ 𝑟1 such that the sums in the following
are defined, the

− (𝑟2 − 𝑟1 + 1)
𝑟2∑

𝑖=𝑟1

𝑥𝑇 (𝑖)𝑀𝑥 (𝑖)

≤ −
(

𝑟2∑
𝑖=𝑟1

𝑥𝑇 (𝑖)

)
𝑀

(
𝑟2∑

𝑖=𝑟1

𝑥 (𝑖)

) (8)

Lemma 2.[32] Given constant symmetric matrices Σ1,Σ2,Σ3

where Σ1 = Σ𝑇
1 and Σ2 = Σ𝑇

2 > 0, then Σ1+Σ𝑇
3 Σ

−1
2 Σ3 < 0

holds if and only if:[
Σ1 Σ𝑇

3

Σ3 −Σ2

]
< 0 𝑜𝑟

[ −Σ2 Σ3

Σ𝑇
3 Σ1

]
< 0.

Lemma 3.[25] For any matrices 𝑍1 > 0, 𝑍2 > 0,𝑀, 𝑇 with
appropriate dimensions, such that following matrix inequalities
hold.[

𝑀𝑍𝑇
1 𝑀

𝑇 𝑀

𝑀𝑇 𝑍1

]
≥ 0

[
𝑇𝑍𝑇

2 𝑇
𝑇 𝑇

𝑇 𝑇 𝑍2

]
≥ 0

(9)

III. MAIN RESULT

Now, for presentation convenience, in the following we
denote
Γ1 = 𝑑𝑖𝑎𝑔

(
𝑙−1 , 𝑙

−
2 , ⋅ ⋅ ⋅ , 𝑙−𝑛

)
Γ2 = 𝑑𝑖𝑎𝑔

(
𝑙+1 , 𝑙

+
2 , ⋅ ⋅ ⋅ , 𝑙+𝑛

)
𝐹1 = diag

(
𝑙−1 𝑙

+
1 , 𝑙

−
2 𝑙

+
2 , ⋅ ⋅ ⋅ , 𝑙−𝑛 𝑙+𝑛

)
𝐹2 = diag

(
𝑙
−

1 +𝑙
+
1

2 ,
𝑙
−

2 +𝑙
+
2

2 , ⋅ ⋅ ⋅ , 𝑙−𝑛 +𝑙+
𝑛

2

)
Theorem 1. Suppose that Assumption 1-3 hold. Then
the DSNNs (3) is globally robust exponential stable in
the mean square if there exist positive-definite matrices
𝑃,𝑄𝑖 (𝑖 = 0, 1) , 𝐸𝑖 (𝑖 = 0, 1, 2) , 𝑍𝑖 (𝑖 = 1, 2), diagonal ma-
trices 𝐷𝑖 (𝑖 = 1, 2), 𝐾 > 0, 𝐿 > 0, positive scalars 𝜀 > 0,
and for any matrices 𝑆𝑖, 𝑇𝑖,𝑀𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ 11) such that
following LMIs hold.

𝑃 ≤ 𝜌𝐼 𝑍𝑖 ≤ 𝜌𝑖𝐼 𝑖 = 1, 2 𝑄1 =

(
𝑄11 𝑄12

𝑄13

)
> 0

(10)(
Ξ1 +Π1𝐼1 (𝜏1)Π

𝑇
1 +Π2𝐼2 (𝜏1)Π

𝑇
2

√
𝜏2 − 𝜏0𝑀√

𝜏2 − 𝜏0𝑀
𝑇 −𝑍1

)
< 0

(11)(
Ξ1 +Π1𝐼1 (𝜏0)Π

𝑇
1 +Π2𝐼2 (𝜏0)Π

𝑇
2

√
𝜏2 − 𝜏0𝑀√

𝜏2 − 𝜏0𝑀
𝑇 −𝑍1

)
< 0

(12)(
Ξ2 +Π3𝐼3 (𝜏0)Π

𝑇
3 +Π4𝐼4 (𝜏0)Π

𝑇
4

√
𝜏0 − 𝜏1𝑇√

𝜏0 − 𝜏1𝑇
𝑇 −𝑍2

)
< 0

(13)(
Ξ2 +Π3𝐼3 (𝜏2)Π

𝑇
3 +Π4𝐼4 (𝜏2)Π

𝑇
4

√
𝜏0 − 𝜏1𝑇√

𝜏0 − 𝜏1𝑇
𝑇 −𝑍2

)
< 0

(14)
where
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Ξ1(1,1) = Ξ2(1,1) = 𝐶𝑇𝑃𝐶 − 𝑃 + 𝜌𝐺1 + 2𝜏2𝑄0 + 𝜃𝑄11

+𝐸0 + 𝐸1 + 𝐸2 − 2𝜃Γ1𝐾 + 2𝜃Γ2𝐿+ 𝜀𝑁𝑇
1 𝑁1 − 𝐹1𝐷1

+(𝜏2 − 𝜏0) (𝐶 − 𝐼)
𝑇
𝑍1 (𝐶 − 𝐼) + (𝜏2 − 𝜏0) 𝜌1𝐺1

+(𝜏0 − 𝜏1) (𝐶 − 𝐼)
𝑇
𝑍2 (𝐶 − 𝐼) + (𝜏0 − 𝜏1) 𝜌2𝐺1

Ξ1(1,2) = Ξ2(1,2) = 𝜌𝐺2 + (𝜏2 − 𝜏0) 𝜌1𝐺2

+(𝜏0 − 𝜏1) 𝜌2𝐺2 Ξ2(1,3) = −𝑆1 + 𝑇1 Ξ1(1,3) = −𝑆1

Ξ1(1,4) = 𝑀1 Ξ2(1,4) = −𝑇1 Ξ1(1,5) = 𝑆1 −𝑀1

Ξ2(1,5) = 𝑆1

Ξ1(1,6) = Ξ2(1,6) = 𝐶𝑇𝑃𝐴+ 𝜃𝑄12 + 𝜃𝐾 − 𝜃𝐿

+(𝜏2 − 𝜏0) (𝐶 − 𝐼)
𝑇
𝑍1𝐴+ (𝜏0 − 𝜏1) (𝐶 − 𝐼)

𝑇
𝑍2𝐴

+𝐹2𝐷1 + 𝜀𝑁𝑇
1 𝑁2

Ξ1(1,7) = Ξ2(1,7) = 𝐶𝑇𝑃𝐵 + 𝜀𝑁𝑇
1 𝑁3

+(𝜏2 − 𝜏0) (𝐶 − 𝐼)
𝑇
𝑍1𝐵 + (𝜏0 − 𝜏1) (𝐶 − 𝐼)

𝑇
𝑍2𝐵

Ξ1(1,8) = Ξ2(1,8) = 𝐶𝑇𝑃𝐻 + (𝜏2 − 𝜏0) (𝐶 − 𝐼)𝑇 𝑍1𝐻

+(𝜏0 − 𝜏1) (𝐶 − 𝐼)
𝑇
𝑍2𝐵

Ξ1(1,9) = Ξ2(1,9) = 𝑆1 Ξ1(1,10) = Ξ2(1,10) = −𝑆1

Ξ1(1,11) = Ξ2(1,11) = 𝑆1

Ξ1(2,2) = Ξ2(2,2) = 𝜌𝐺3 −𝑄11 + 2Γ1𝐾 − 2Γ2𝐿

+(𝜏2 − 𝜏0) 𝜌1𝐺3 + (𝜏0 − 𝜏1) 𝜌2𝐺3 − 𝐹1𝐷2

Ξ1(2,3) = −𝑆2 Ξ2(2,3) = −𝑆2 + 𝑇2 Ξ1(2,4) = 𝑀2

Ξ2(2,4) = −𝑇2 Ξ1(2,5) = 𝑆2 −𝑀2 Ξ2(2,5) = 𝑆2

Ξ1(2,7) = Ξ2(2,7) = −𝑄12 −𝐾 + 𝐿+ 𝐹2𝐷2

Ξ1(2,9) = Ξ2(2,9) = 𝑆2 Ξ1(2,10) = Ξ2(2,10) = −𝑆2

Ξ1(2,11) = Ξ2(2,11) = 𝑆2

Ξ1(3,3) = −𝑆3 − 𝑆𝑇
3 − 𝐸1

Ξ2(3,3) = −𝑆3 − 𝑆𝑇
3 − 𝐸1 + 𝑇3 + 𝑇 𝑇

3

Ξ1(3,4) = −𝑆𝑇
4 +𝑀3 Ξ2(3,4) = −𝑆𝑇

4 − (𝑇3 − 𝑇 𝑇
4

)
Ξ1(3,5) = 𝑆3 − 𝑆𝑇

5 −𝑀3 Ξ2(3,5) = 𝑆3 − 𝑆𝑇
5 + 𝑇 𝑇

5

Ξ1(3,6) = −𝑆𝑇
6 Ξ2(3,6) = −𝑆𝑇

6 + 𝑇 𝑇
6

Ξ1(3,7) = −𝑆𝑇
7 Ξ2(3,7) = −𝑆𝑇

7 + 𝑇 𝑇
7

Ξ1(3,8) = −𝑆𝑇
8 Ξ2(3,8) = −𝑆𝑇

8 + 𝑇 𝑇
8

Ξ1(3,9) = −𝑆𝑇
9 + 𝑆3 Ξ2(3,9) = −𝑆𝑇

9 + 𝑇 𝑇
9 + 𝑆3

Ξ1(3,10) = −𝑆𝑇
10 − 𝑆3 Ξ2(3,10) = −𝑆𝑇

10 + 𝑇 𝑇
10 − 𝑆3

Ξ1(3,11) = −𝑆𝑇
11 + 𝑆3 Ξ2(3,11) = −𝑆𝑇

11 + 𝑇 𝑇
11 + 𝑆3

Ξ1(4,4) = −𝐸0 +𝑀4 +𝑀𝑇
4 Ξ2(4,4) = −𝐸0 −

(
𝑇4 + 𝑇 𝑇

4

)
Ξ1(4,5) = 𝑆4 −𝑀4 +𝑀𝑇

5 Ξ2(4,5) = 𝑆4 − 𝑇 𝑇
5

Ξ1(4,6) = 𝑀𝑇
6 Ξ2(4,6) = −𝑇 𝑇

6 Ξ1(4,7) = 𝑀𝑇
7

Ξ2(4,7) = −𝑇 𝑇
7 Ξ1(4,8) = 𝑀𝑇

8 Ξ2(4,8) = −𝑇 𝑇
8

Ξ1(4,9) = 𝑀𝑇
9 + 𝑆4 Ξ2(4,9) = −𝑇 𝑇

9 + 𝑆4

Ξ1(4,10) = 𝑀𝑇
10 − 𝑆4 Ξ2(4,10) = −𝑇 𝑇

10 − 𝑆4

Ξ1(4,11) = 𝑀𝑇
11 + 𝑆4 Ξ2(4,11) = −𝑇 𝑇

11 + 𝑆4

Ξ1(5,5) = 𝑆5 + 𝑆𝑇
5 − 𝐸2 −𝑀5 −𝑀𝑇

5

Ξ2(5,5) = 𝑆5 + 𝑆𝑇
5 − 𝐸2 Ξ1(5,6) = 𝑆𝑇

6 −𝑀𝑇
6

Ξ2(5,6) = 𝑆𝑇
6 Ξ1(5,7) = 𝑆𝑇

7 −𝑀𝑇
7 Ξ2(5,7) = 𝑆𝑇

7

Ξ1(5,8) = 𝑆𝑇
8 −𝑀𝑇

8 Ξ2(5,8) = 𝑆𝑇
8

Ξ1(5,9) = 𝑆𝑇
9 −𝑀𝑇

9 + 𝑆5 Ξ2(5,9) = 𝑆𝑇
9 + 𝑆5

Ξ1(5,10) = 𝑆𝑇
10 −𝑀𝑇

10 − 𝑆5 Ξ2(5,10) = 𝑆𝑇
10 − 𝑆5

Ξ1(5,11) = 𝑆𝑇
11 −𝑀𝑇

11 + 𝑆5 Ξ2(5,11) = 𝑆𝑇
11 + 𝑆5

Ξ1(6,6) = Ξ2(6,6) = 𝐴𝑇𝑃𝐴+ 𝜃𝑄13 −𝐷1 + 𝜀𝑁𝑇
2 𝑁2

+(𝜏2 − 𝜏0)𝐴
𝑇𝑍1𝐴+ (𝜏0 − 𝜏1)𝐴

𝑇𝑍2𝐴

Ξ1(6,7) = Ξ2(6,7) = 𝐴𝑇𝑃𝐵 + 𝜀𝑁𝑇
2 𝑁3

+(𝜏2 − 𝜏0)𝐴
𝑇𝑍1𝐵 + (𝜏0 − 𝜏1)𝐴

𝑇𝑍2𝐵

Ξ1(6,8) = Ξ2(6,8) = 𝐴𝑇𝑃𝐻 + (𝜏2 − 𝜏0)𝐴
𝑇𝑍1𝐻

+(𝜏0 − 𝜏1)𝐴
𝑇𝑍2𝐻 Ξ1(6,9) = Ξ2(6,9) = 𝑆6

Ξ1(6,10) = Ξ2(6,10) = −𝑆6 Ξ1(6,11) = Ξ2(6,11) = 𝑆6

Ξ1(7,7) = Ξ2(7,7) = 𝐵𝑇𝑃𝐵 −𝑄13 −𝐷2 + 𝜀𝑁𝑇
3 𝑁3

+(𝜏2 − 𝜏0)𝐵
𝑇𝑍1𝐵 + (𝜏0 − 𝜏1)𝐵

𝑇𝑍2𝐵

Ξ1(7,8) = Ξ2(7,8) = 𝐵𝑇𝑃𝐻 + (𝜏2 − 𝜏0)𝐵
𝑇𝑍1𝐻

+(𝜏0 − 𝜏1)𝐵
𝑇𝑍2𝐻 Ξ1(7,9) = Ξ2(7,9) = 𝑆7

Ξ1(7,10) = Ξ2(7,10) = −𝑆7 Ξ1(7,11) = Ξ2(7,11) = 𝑆7

Ξ1(8,8) = Ξ2(8,8) = 𝐻𝑇𝑃𝐻 − 𝜀+ (𝜏2 − 𝜏0)𝐻
𝑇𝑍1𝐻

+(𝜏0 − 𝜏1)𝐻
𝑇𝑍2𝐻 Ξ1(8,9) = Ξ2(8,9) = 𝑆8

Ξ1(8,10) = Ξ2(8,10) = −𝑆8 Ξ1(8,11) = Ξ2(8,11) = 𝑆8

Ξ1(9,9) = Ξ2(9,9) = − 1
𝜏1
𝑄0 + 𝑆9 + 𝑆𝑇

9

Ξ1(9,10) = Ξ2(9,10) = −𝑆9 + 𝑆𝑇
10

Ξ1(9,11) = Ξ2(9,11) = 𝑆9 + 𝑆𝑇
11

Ξ1(10,10) = Ξ2(10,10) = − 1
𝜏2
𝑄0 − 𝑆10 − 𝑆𝑇

10

Ξ1(10,11) = Ξ2(10,11) = 𝑆10 − 𝑆𝑇
11

Ξ1(11,11) = Ξ2(11,11) = − 1
𝜏2−𝜏1

𝑄0 + 𝑆11 + 𝑆𝑇
11

𝑆 =
[
𝑆𝑇
1 , 𝑆

𝑇
2 , ⋅ ⋅ ⋅ , 𝑆𝑇

11

]𝑇
𝑀 =

[
𝑀𝑇

1 ,𝑀
𝑇
2 , ⋅ ⋅ ⋅ ,𝑀𝑇

11

]𝑇
𝑇 =

[
𝑇 𝑇
1 , 𝑇

𝑇
2 , ⋅ ⋅ ⋅ , 𝑇 𝑇

11

]𝑇
𝜃 = 𝜏2 − 𝜏1 + 1

Π1 = [0,−𝐼, 𝐼, 0, 0, 0, 0, 0, 0, 0, 0]𝑇
Π2 = [0, 𝐼, 0,−𝐼, 0, 0, 0, 0, 0, 0, 0]𝑇
Π3 = [0, 𝐼, 0, 0,−𝐼, 0, 0, 0, 0, 0, 0]𝑇
Π4 = [0,−𝐼, 0, 𝐼, 0, 0, 0, 0, 0, 0, 0]𝑇
Φ1 = [0, 0, 0, 𝐼,−𝐼, 0, 0, 0, 0, 0, 0]𝑇
Φ2 = [0, 0, 𝐼,−𝐼, 0, 0, 0, 0, 0, 0, 0]𝑇

Proof: Consider the Lyapunov-Krasovskii functional as
follows:

𝑣1 (𝑘) = 𝑥𝑇 (𝑘)𝑃𝑥 (𝑘)

𝑣2 (𝑘) =
𝑘−1∑

𝑗=𝑘−𝜏1

𝑘−1∑
𝑖=𝑗

𝑥𝑇 (𝑖)𝑄0𝑥 (𝑖)

+
𝑘−1∑

𝑗=𝑘−𝜏2

𝑘−1∑
𝑖=𝑗

𝑥𝑇 (𝑖)𝑄0𝑥 (𝑖) +
𝑘−𝜏1∑

𝑗=𝑘−𝜏2+1

𝑘−1∑
𝑖=𝑗

𝑥𝑇 (𝑖)𝑄0𝑥 (𝑖)

𝑣3 (𝑘) =
𝑘−1∑

𝑖=𝑘−𝜏(𝑘)

[
𝑥 (𝑖)

𝑓 (𝑥 (𝑖))

]𝑇
𝑄1

[
𝑥 (𝑖)

𝑓 (𝑥 (𝑖))

]

+
𝑘−𝜏1∑

𝑗=𝑘+1−𝜏2

𝑘−1∑
𝑖=𝑗

[
𝑥 (𝑖)

𝑓 (𝑥 (𝑖))

]𝑇
𝑄1

[
𝑥 (𝑖)

𝑓 (𝑥 (𝑖))

]

𝑣4 (𝑘) =
𝑘−1∑

𝑖=𝑘−𝜏0

𝑥𝑇 (𝑖)𝐸0𝑥 (𝑖) +
𝑘−1∑

𝑖=𝑘−𝜏1

𝑥𝑇 (𝑖)𝐸1𝑥 (𝑖)

+
𝑘−1∑

𝑖=𝑘−𝜏2

𝑥𝑇 (𝑖)𝐸2𝑥 (𝑖)

𝑣5 (𝑘) = 2
𝑘−1∑

𝑖=𝑘−𝜏(𝑘)

(𝑓 (𝑥 (𝑖))− Γ1𝑥 (𝑖))
𝑇
𝐾𝑥 (𝑖)

+ (Γ2𝑥 (𝑖)− 𝑓 (𝑥 (𝑖)))
𝑇
𝐿𝑥 (𝑖)

+2
𝑘−𝜏1∑

𝑗=𝑘−𝜏2+1

𝑘−1∑
𝑖=𝑗

(𝑓 (𝑥 (𝑖))− Γ1𝑥 (𝑖))
𝑇
𝐾𝑥 (𝑖)

+ (Γ2𝑥 (𝑖)− 𝑓 (𝑥 (𝑖)))𝑇 𝐿𝑥 (𝑖)

𝑣6 (𝑘) =
−1−𝜏0∑
𝑗=−𝜏2

𝑘−1∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

+
−1−𝜏1∑
𝑗=−𝜏0

𝑘−1∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖) 𝜂 (𝑖) = 𝑥 (𝑖+ 1)− 𝑥 (𝑖)

then along the solution of DSNNs (3), we have

𝐸 (Δ𝑣1 (𝑘)) ≤ 𝐸
(
𝑥𝑇 (𝑘)

(
𝐶𝑇𝑃𝐶 − 𝑃

)
𝑥 (𝑘)

+2𝑥𝑇 (𝑘)𝐶𝑇𝑃𝐴𝑓 (𝑥 (𝑘)) + 2𝑥𝑇 (𝑘)𝐶𝑇𝑃𝐵𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))
+2𝑥𝑇 (𝑘)𝐶𝑇𝑃𝐻𝑞1 (𝑘) + 𝑓𝑇 (𝑥 (𝑘))𝐴𝑇𝑃𝐴𝑓 (𝑥 (𝑘))
+2𝑓𝑇 (𝑥 (𝑘))𝐴𝑇𝑃𝐵𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))
+ 2𝑓𝑇 (𝑥 (𝑘))𝐴𝑇𝑃𝐻𝑞1 (𝑘)
+𝑓𝑇 (𝑥 (𝑘 − 𝜏 (𝑘)))𝐵𝑇𝑃𝐵𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))
+2𝑓𝑇 (𝑥 (𝑘 − 𝜏 (𝑘)))𝐵𝑇𝑃𝐻𝑞1 (𝑘) + 𝑞𝑇1 (𝑘)𝐻𝑇𝐻𝑞1 (𝑘)
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[
𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))

]𝑇 [
𝐺1 𝐺2

𝐺3

] [
𝑥 (𝑘)

𝑥 (𝑘 − 𝜏 (𝑘))

])

𝐸 (Δ𝑣2 (𝑘)) ≤ 𝐸
(
2𝜏2𝑥

𝑇 (𝑘)𝑄0𝑥 (𝑘)

− 1
𝜏1

𝑘−1∑
𝑖=𝑘−𝜏1

𝑥𝑇 (𝑖)𝑄0

𝑘−1∑
𝑖=𝑘−𝜏1

𝑥 (𝑖)

− 1
𝜏2

𝑘−1∑
𝑖=𝑘−𝜏2

𝑥𝑇 (𝑖)𝑄0

𝑘−1∑
𝑖=𝑘−𝜏2

𝑥 (𝑖)

− 1
𝜏2−𝜏1

𝑘−𝜏1∑
𝑖=𝑘−𝜏2+1

𝑥𝑇 (𝑖)𝑄0

𝑘−𝜏1∑
𝑖=𝑘−𝜏2+1

𝑥 (𝑖)

)

𝐸 (Δ𝑣3 (𝑘)) ≤ 𝐸
(
𝑥𝑇 (𝑘) 𝜃𝑄11𝑥 (𝑘)

+2𝑥𝑇 (𝑘) 𝜃𝑄12𝑓 (𝑥 (𝑘)) + 𝑓𝑇 (𝑥 (𝑘)) 𝜃𝑄13𝑓 (𝑥 (𝑘))
−𝑥𝑇 (𝑘 − 𝜏 (𝑘))𝑄11𝑥 (𝑘 − 𝜏 (𝑘))
−2𝑥𝑇 (𝑘 − 𝜏 (𝑘))𝑄12𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))
−𝑓𝑇 (𝑥 (𝑘 − 𝜏 (𝑘)))𝑄13𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))

)
𝐸 (Δ𝑣4 (𝑘)) = 𝐸

(
𝑥𝑇 (𝑘) (𝐸0 + 𝐸1 + 𝐸2)𝑥 (𝑘)

−𝑥𝑇 (𝑘 − 𝜏0)𝐸0𝑥 (𝑘 − 𝜏0)− 𝑥𝑇 (𝑘 − 𝜏1)𝐸1𝑥 (𝑘 − 𝜏1)
−𝑥𝑇 (𝑘 − 𝜏2)𝐸2𝑥 (𝑘 − 𝜏2)

)
𝐸 (Δ𝑣5 (𝑘)) ≤ 𝐸

(
2𝜃 (𝑓 (𝑥 (𝑘))− Γ1𝑥 (𝑘))

𝑇
𝐾𝑥 (𝑘)

−2𝑓𝑇 (𝑥 (𝑘 − 𝜏 (𝑘)))𝐾𝑥 (𝑘 − 𝜏 (𝑘))
+2𝑥𝑇 (𝑘 − 𝜏 (𝑘)) Γ1𝐾𝑥 (𝑘 − 𝜏 (𝑘))

+2𝜃 (Γ2𝑥 (𝑘)− 𝑓 (𝑥 (𝑘)))
𝑇
𝐿𝑥 (𝑘)

+2𝑓𝑇 (𝑥 (𝑘 − 𝜏 (𝑘)))𝐿𝑥 (𝑘 − 𝜏 (𝑘))
−2𝑥𝑇 (𝑘 − 𝜏 (𝑘)) Γ2𝐿𝑥 (𝑘 − 𝜏 (𝑘))

)
𝐸 (Δ𝑣6 (𝑘)) = 𝐸

(
(𝜏0 − 𝜏1) 𝜂

𝑇 (𝑘)𝑍2𝜂 (𝑘)

+ (𝜏2 − 𝜏0) 𝜂
𝑇 (𝑘)𝑍1𝜂 (𝑘)−

𝑘−1−𝜏1∑
𝑖=𝑘−𝜏0

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖)

−
𝑘−1−𝜏0∑
𝑖=𝑘−𝜏2

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

)

Case one: if 𝜏1 ≤ 𝜏 (𝑘) ≤ 𝜏0, then

−
𝑘−1−𝜏1∑
𝑖=𝑘−𝜏0

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖) = −
𝑘−1−𝜏(𝑘)∑
𝑖=𝑘−𝜏0

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖)

−
𝑘−1−𝜏1∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖)

= − 1
𝜏0−𝜏1

(𝜏 (𝑘)− 𝜏1)
𝑘−1−𝜏1∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖)

−
(
1− 1

𝜏0−𝜏1
(𝜏 (𝑘)− 𝜏1)

) 𝑘−1−𝜏1∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖)

− 1
𝜏0−𝜏1

(𝜏0 − 𝜏 (𝑘))
𝑘−1−𝜏(𝑘)∑
𝑖=𝑘−𝜏0

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖)

−
(
1− 1

𝜏0−𝜏1
(𝜏0 − 𝜏 (𝑘))

) 𝑘−1−𝜏(𝑘)∑
𝑖=𝑘−𝜏0

𝜂𝑇 (𝑖)𝑍2𝜂 (𝑖)

≤ 𝜉𝑇 (𝑘)Π1𝐼1 (𝜏 (𝑘))Π
𝑇
1 𝜉 (𝑘)

+𝜉𝑇 (𝑘)Π2𝐼2 (𝜏 (𝑘))Π
𝑇
2 𝜉 (𝑘)

where
𝐼1 (𝜏 (𝑘)) =

[
− 2

𝜏0−𝜏1
+ 1

(𝜏0−𝜏1)
2 (𝜏 (𝑘)− 𝜏1)

]
𝑍2

𝐼2 (𝜏 (𝑘)) =
[
− 2

𝜏0−𝜏1
+ 1

(𝜏0−𝜏1)
2 (𝜏0 − 𝜏 (𝑘))

]
𝑍2

𝜉𝑇 (𝑘) =
[
𝑥𝑇 (𝑘) , 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) , 𝑥𝑇 (𝑘 − 𝜏1) ,
𝑥𝑇 (𝑘 − 𝜏0) , 𝑥

𝑇 (𝑘 − 𝜏2) , 𝑓
𝑇 (𝑥 (𝑘)) ,

𝑓𝑇 (𝑥 (𝑘 − 𝜏 (𝑘))) , 𝑞𝑇1 (𝑘) ,
𝑘−1∑

𝑖=𝑘−𝜏1

𝑥𝑇 (𝑖),

𝑘−1∑
𝑖=𝑘−𝜏2

𝑥𝑇 (𝑖),
𝑘−𝜏1∑

𝑖=𝑘−𝜏2+1

𝑥𝑇 (𝑖)

]

Now from the Lemma 3, we know that
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏2

[
𝜉 (𝑘)
𝜂 (𝑖)

]𝑇 [
𝑀𝑍−1

1 𝑀𝑇 𝑀

𝑀𝑇 𝑍1

] [
𝜉 (𝑘)
𝜂 (𝑖)

]
> 0

that is
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏2

𝜉𝑇 (𝑘)𝑀𝑍−1
1 𝑀𝑇 𝜉 (𝑘) + 2𝜉𝑇 (𝑘)𝑀𝜂 (𝑖)

+𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)
= (𝜏2 − 𝜏0) 𝜉

𝑇 (𝑘)𝑀𝑍−1
1 𝑀𝑇 𝜉 (𝑘)

+2𝜉𝑇 (𝑘)𝑀
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏2

𝜂 (𝑖)

+
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏2

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖) > 0

From the definition of the 𝜂 (𝑖), obviously we can have
following equality

2𝜉𝑇 (𝑘)𝑀

(
𝑥 (𝑘 − 𝜏0)− 𝑥 (𝑘 − 𝜏2)−

𝑘−𝜏0−1∑
𝑖=𝑘−𝜏2

𝜂 (𝑖)

)
= 0

that is equivalent to the

2𝜉𝑇 (𝑘)𝑀Φ1𝜉 (𝑘)− 2𝜉𝑇 (𝑘)𝑀

𝑘−𝜏0−1∑
𝑖=𝑘−𝜏2

𝜂 (𝑖) = 0

then combination the above discussion, we can have the upper
bound of the 𝐸 (Δ𝑣6 (𝑘))

𝐸 (Δ𝑣6 (𝑘)) ≤ 𝐸
(
(𝜏0 − 𝜏1) 𝜂

𝑇 (𝑘)𝑍2𝜂 (𝑘)
+ (𝜏2 − 𝜏0) 𝜂

𝑇 (𝑘)𝑍1𝜂 (𝑘) + 𝜉𝑇 (𝑘)Π1𝐼1 (𝜏 (𝑘))Π
𝑇
1 𝜉 (𝑘)

+𝜉𝑇 (𝑘)Π1𝐼1 (𝜏 (𝑘))Π
𝑇
1 𝜉 (𝑘)

+ (𝜏2 − 𝜏0) 𝜉
𝑇 (𝑘)𝑀𝑍−1

1 𝑀𝑇 𝜉 (𝑘) +2𝜉𝑇 (𝑘)𝑀Φ1𝜉 (𝑘)
)

In order to derive less conservative results, we add the
following zero equation with free-matrix 𝑆

2𝜉𝑇 (𝑘)𝑆 (𝑥 (𝑘 − 𝜏2)− 𝑥 (𝑘 − 𝜏1)

+
𝑘−1∑

𝑖=𝑘−𝜏1

𝑥 (𝑖)−
𝑘−1∑

𝑖=𝑘−𝜏2

𝑥 (𝑖)

+
𝑘−𝜏1∑

𝑖=𝑘−𝜏2+1

𝑥 (𝑖)

)
= 0

(15)

From the (6), for any positive-definite diagonal matrix 𝐷1

and 𝐷2, it follows that[
𝑥 (𝑘)

𝑓 (𝑥 (𝑘))

]𝑇 [ −𝐹1𝐷1 𝐹2𝐷1

−𝐷1

] [
𝑥 (𝑘)

𝑓 (𝑥 (𝑘))

]
≥ 0[

𝑥 (𝑘 − 𝜏 (𝑘))
𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))

]𝑇 [ −𝐹1𝐷2 𝐹2𝐷2

−𝐷2

]
[

𝑥 (𝑘 − 𝜏 (𝑘))
𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))

]
≥ 0

(16)
From (2) and (3), we know that 𝑞𝑇1 (𝑘) 𝑞1 (𝑘) ≤

𝑝𝑇1 (𝑘) 𝑝1 (𝑘), then there exist a positive scalar 𝜀 satisfying
the following inequality

𝜀
(
𝑝𝑇1 (𝑘) 𝑝1 (𝑘)− 𝑞𝑇1 (𝑘) 𝑞1 (𝑘)

) ≥ 0 (17)

that is
𝜀
(
𝑥𝑇 (𝑘)𝑁𝑇

1 𝑁1𝑥 (𝑘) + 2𝑥𝑇 (𝑘)𝑁𝑇
1 𝑁2𝑓 (𝑥 (𝑘))

+2𝑥𝑇 (𝑘)𝑁𝑇
1 𝑁3𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))

+𝑓𝑇 (𝑥 (𝑘))𝑁𝑇
2 𝑁2𝑓 (𝑥 (𝑘))

+2𝑓𝑇 (𝑥 (𝑘))𝑁𝑇
2 𝑁3𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))

+𝑓𝑇 (𝑥 (𝑘 − 𝜏 (𝑘)))𝑁𝑇
3 𝑁3𝑓 (𝑥 (𝑘 − 𝜏 (𝑘)))

−𝑞𝑇1 (𝑘) 𝑞1 (𝑘)
) ≥ 0
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Now combining above discussion, we have a upper bound
as

𝐸 (Δ𝑣 (𝑘)) ≤ 𝐸
(
𝜉𝑇 (𝑘)

(
Ξ∗
1 +Π1𝐼1 (𝜏 (𝑘))Π

𝑇
1

+Π2𝐼2 (𝜏 (𝑘))Π
𝑇
2

)
𝜉 (𝑘)

)
Ξ∗
1 = Ξ1 + (𝜏2 − 𝜏0)𝑀𝑍−1

1 𝑀𝑇

Then if we want to have

Ξ∗
1 +Π1𝐼1 (𝜏 (𝑘))Π

𝑇
1 +Π2𝐼2 (𝜏 (𝑘))Π

𝑇
2 < 0

for 𝜏1 ≤ 𝜏 (𝑘) ≤ 𝜏0, which is equivalent to handle following
two LMIs by the convex combination theorem.

Ξ∗
1 +Π1𝐼1 (𝜏1)Π

𝑇
1 +Π2𝐼2 (𝜏1)Π

𝑇
2 < 0

Ξ∗
1 +Π1𝐼1 (𝜏0)Π

𝑇
1 +Π2𝐼2 (𝜏0)Π

𝑇
2 < 0

that are equivalent to (11) and (12) hold by the Lemma 2.
Therefore, if the LMIs (10)-(12) hold, there exist a positive
scalar 𝜆1 > 0 satisfying 𝐸 (Δ𝑣 (𝑘)) ≤ −𝜆1𝐸 ∥𝑥 (𝑘)∥2.

Case two: if 𝜏0 < 𝜏 (𝑘) ≤ 𝜏2

−
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏2

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖) = −
𝑘−𝜏(𝑘)−1∑
𝑖=𝑘−𝜏2

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

−
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

= − 1
𝜏2−𝜏0

(𝜏2 − 𝜏 (𝑘))
𝑘−𝜏(𝑘)−1∑
𝑖=𝑘−𝜏2

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

− 1
𝜏2−𝜏0

(𝜏 (𝑘)− 𝜏0)
𝑘−𝜏(𝑘)−1∑
𝑖=𝑘−𝜏2

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

− 1
𝜏2−𝜏0

(𝜏2 − 𝜏 (𝑘))
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

− 1
𝜏2−𝜏0

(𝜏 (𝑘)− 𝜏0)
𝑘−𝜏0−1∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖)𝑍1𝜂 (𝑖)

≤ [𝑥𝑇 (𝑘 − 𝜏 (𝑘))− 𝑥𝑇 (𝑘 − 𝜏2)
]
𝐼3 (𝜏 (𝑘))

[𝑥 (𝑘 − 𝜏 (𝑘))− 𝑥 (𝑘 − 𝜏2)]
+
[
𝑥𝑇 (𝑘 − 𝜏0)− 𝑥𝑇 (𝑘 − 𝜏 (𝑘))

]
𝐼4 (𝜏 (𝑘))

[𝑥 (𝑘 − 𝜏0)− 𝑥 (𝑘 − 𝜏 (𝑘))]
= 𝜉𝑇 (𝑘)Π3𝐼3 (𝜏 (𝑘))Π

𝑇
3 𝜉 (𝑘)

+𝜉𝑇 (𝑘)Π4𝐼4 (𝜏 (𝑘))Π
𝑇
4 𝜉 (𝑘)

With the similar method as coping in the case one by the
Lemma 3, we can have

𝐸 (Δ𝑣6 (𝑘)) ≤ 𝐸
(
(𝜏0 − 𝜏1) 𝜂

𝑇 (𝑘)𝑍2𝜂 (𝑘)
+ (𝜏2 − 𝜏0) 𝜂

𝑇 (𝑘)𝑍1𝜂 (𝑘) + 𝜉𝑇 (𝑘)Π3𝐼3 (𝜏 (𝑘))Π
𝑇
3 𝜉 (𝑘)

+𝜉𝑇 (𝑘)Π4𝐼4 (𝜏 (𝑘))Π
𝑇
4 𝜉 (𝑘)

+ (𝜏0 − 𝜏1) 𝜉
𝑇 (𝑘)𝑇𝑍−1

2 𝑇 𝑇 𝜉 (𝑘) + 2𝜉𝑇 (𝑘)𝑇Φ2𝜉 (𝑘)
)

Then under this condition,we have a upper bound as
𝐸 (Δ𝑣 (𝑘)) ≤ 𝐸

(
𝜉𝑇 (𝑘)

(
Ξ∗
2 +Π3𝐼3 (𝜏 (𝑘))Π

𝑇
3

+Π4𝐼4 (𝜏 (𝑘))Π
𝑇
4

)
𝜉 (𝑘)

)
Ξ∗
2 = Ξ2 + (𝜏0 − 𝜏1)𝑇𝑍

−1
2 𝑇 𝑇

Similar to the case one, if we want to have

Ξ∗
2 +Π3𝐼3 (𝜏 (𝑘))Π

𝑇
3 +Π4𝐼4 (𝜏 (𝑘))Π

𝑇
4 < 0

for 𝜏1 < 𝜏 (𝑘) ≤ 𝜏2, which are equivalent to handle following
two LMIs by the convex combination theorem.

Ξ∗
2 +Π3𝐼3 (𝜏0)Π

𝑇
3 +Π4𝐼4 (𝜏0)Π

𝑇
4 < 0

Ξ∗
2 +Π3𝐼3 (𝜏2)Π

𝑇
3 +Π4𝐼4 (𝜏2)Π

𝑇
4 < 0

that are equivalent to (13) and (14) hold by the Lemma
2. Therefore, if the LMIs (10),(13) and (14) hold, there
exist a positive scalar 𝜆2 > 0 satisfying 𝐸 (Δ𝑣 (𝑘)) ≤
−𝜆2𝐸 ∥𝑥 (𝑘)∥2.

Now combining the case one and the case two, we can easy
to know that if the LMIs (10)-(14) hold, we will have

𝐸 (Δ𝑣 (𝑘)) ≤ −min (𝜆1, 𝜆2)𝐸 ∥𝑥 (𝑘)∥2 (18)

Furthermore, with the similar method in the [18], we can
obtain that system (3) is globally robust exponentially stable
in the mean square. This completes the proof of the Theorem
1.
Remark 2. In this paper, based on the convex combination
theorem, Theorem 1 proposes a delay-dependent stability
criterion for uncertain stochastic neural networks with time-
varying delays can be achieved by solving some LMIs. Free-
weighing matrices 𝑆𝑖, 𝑀𝑖 and 𝑇𝑖 are introduced into the
LMI condition are to reduce conservatism for system (3).
Remark 3. By introduced 𝜏0, we divided two kinds of cases
to discuss our results at each subintervals 𝜏1 ≤ 𝜏 (𝑘) ≤ 𝜏0
and 𝜏0 < 𝜏 (𝑘) ≤ 𝜏2, which is different from the method of
[16,22], the main advantage of this method is that it makes
full use of the information on the considered time-delay 𝜏 (𝑘),
meantime we through a numerical example show that Theorem
1 provide an improved result compared with the recent ones
in [16,22].

IV. EXAMPLES

In this section, we will give two examples to show the
effectiveness of the conditions given here.
Example 1. Consider the uncertain discrete-time stochastic
neural network (3) with:

𝐶 =

[
0.8 0
0 0.9

]
𝐴 =

[
0.4 −0.7
0.1 0.005

]

𝐵 =

[ −0.2 0.6
−0.5 −0.1

]
𝐻 =

[
0.2 0
0 0.5

]
𝑁1 = 𝑁2 = 𝑁3 = 0.1
The activation function satisfy Assumption 1 with Γ1 =

𝑑𝑖𝑎𝑔 (0, 0) and Γ2 = 𝑑𝑖𝑎𝑔 (0.5, 0.5) . Choosing 𝐺1 = 𝐺2 =
0.001𝐼 and 𝐺3 = 0.002𝐼 in Theorem 1. Table 1 show
the corresponding maximum allowable value of 𝜏2 for given
𝜏1, one can see that stability criteria propose in this paper
significantly improve the existing results of [16,22], and the
feasibility is depicted as Fig.1.
Example 2. Consider the uncertain DSNNs with the following
parameters:

𝐶 =

[
0.25 0
0 0.1

]
𝐴 =

[
0.12 0.24
−0.15 0.2

]

𝐵 =

[ −0.25 0.1
0.02 0.09

]
𝐻 =

[
0.2 0
0 0.3

]

𝑁1 =

[
0.15 0.1
0 −0.7

]
𝑁2 =

[
0.1 0.3
−0.2 0.05

]

𝑁3 =

[
0.13 0.06
−0.05 0.15

]
𝐺1 = 𝐺2 = 𝐺3 = 0

The activation function satisfy Assumption 1 with Γ1 =
𝑑𝑖𝑎𝑔 (0.1, 0.2) and Γ2 = 𝑑𝑖𝑎𝑔 (1, 1.1). Obviously when 𝐺1 =
𝐺2 = 𝐺3 = 0 in the Theorem 1, which is equivalent to
the criteria of uncertain discrete-time neural networks (DNNs)
with time-varying delays. For 𝜏1 = 2, by [13,14,12], the upper
bound of the time-varying delay 𝜏 (𝑘) is 6, 10 and 12, respec-
tively. By the Theorem 1 in this paper, we obtain 𝜏2 = 41.
Namely, when 𝜏1 = 2 and 𝜏2 = 41, the stability condition
in the Theorem 1 is applicable but those in [13,14,12] are
not applicable for this example. The further comparison is
listed in Table2, from which one can see that the criterion
proposed in Theorem 1 is less conservative than those obtained
in [13,14,12].



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

1179

V. CONCLUSION

In this letter,a improved delay-dependent global robust
exponential stability criterion for uncertain stochastic discrete-
time neural networks with time-varying delay is proposed.
A suitable Lyapunov functional has been proposed to derive
some less conservative delay-dependent stability criteria by
using the free-weighting matrices method and the convex
combination theorem. Finally, two numerical examples have
been given to demonstrate the effectiveness of the proposed
method.
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Fig.1. Dynamics response of system (3).

TABLE I
CALCULATED THE MAXIMUM 𝜏2 FOR GIVEN 𝜏1 FOR EXAMPLE 1.

𝜏1 2 4 6 8 10
[16] 4 6 8 9 11
[22] 11 12 14 16 18

Theorem 1 27 29 31 33 35

TABLE II
CALCULATED THE MAXIMUM 𝜏2 FOR GIVEN 𝜏1 FOR EXAMPLE 2.

𝜏1 2 4 6 8 10
[13] 6 8 10 12 14
[14] 10 12 14 16 18
[12] 12 14 16 18 20

Theorem 1 41 43 45 47 49


