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Notes on Fractional k-Covered Graphs
Sizhong Zhou, Yang Xu

Abstract—A graph G is fractional k-covered if for each edge e of
G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2,
then a fractional k-covered graph is called a fractional 2-covered
graph. The binding number bind(G) is defined as follows,

bind(G) = min{ |NG(X)|
|X| : Ø �= X ⊆ V (G), NG(X) �= V (G)}.

In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4
and bind(G) > 5

3
.

Keywords—graph, binding number, fractional k-factor, fractional
k-covered graph.

I. INTRODUCTION

MANY physical structures can conveniently be modelled
by networks. Examples include a communication net-

work with the nodes and links modelling cities and com-
munication channels, respectively, or a railroad network with
nodes and links representing railroad stations and railways
between two stations, respectively. Factors and factorizations
in networks are very useful in combinatorial design, network
design, circuit layout, and so on. It is well known that a
network can be represented by a graph. Vertices and edges of
the graph correspond to nodes and links between the nodes,
respectively. Henceforth we use the term ”graph” instead of
”network”.

We investigate the fractional factor problem in graphs,
which can be considered as a relaxations of the well-known
cardinality matching problem. The fractional factor problem
has wide-range applications in areas such as network design,
scheduling and combinatorial polyhedra. For instance, in a
communication network if we allow several large data packets
to be sent to various destinations through several channels,
the efficiency of the network will be improved if we allow
the large data packets to be partitioned into small parcels. The
feasible assignment of data packets can be seen as a fractional
flow problem and it becomes a fractional matching problem
when the destinations and sources of a network are disjoint
(i.e., the underlying graph is bipartite).

We consider only finite simple graph G with vertex set
V (G) and edge set E(G). For x ∈ V (G), the degree of x
in G is denoted by dG(x), the minimum vertex degree of
V (G) is denoted by δ(G). For any S ⊆ V (G), we denote by
NG(S) the neighborhood set of S in G, by G[S] the subgraph
of G induced by S, by G− S the subgraph obtained from G
by deleting vertices in S together with the edges incident to
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vertices in S. A vertex set S ⊆ V (G) is called independent if
G[S] has no edges. Let S and T be disjoint subsets of V (G).
We denote by eG(S, T ) the number of edges joining S and T .
We write i(G) for the number of isolated vertices in G. The
binding number of G is defined by Woodall [1] as

bind(G) = min{ |NG(X)|
|X| : Ø �= X ⊆ V (G),

NG(X) �= V (G)}.
Let g and f be two nonnegative integer-valued functions
defined on V (G) such that g(x) ≤ f(x) for each x ∈ V (G).
A fractional (g, f)-factor is a function h that assigns to each
edge of a graph G a number in [0,1], so that for each
vertex x of G we have g(x) ≤ dh

G(x) ≤ f(x), where
dh

G(x) =
∑

e�x h(e)(the sum is taken over all edges incident
to x) is a fractional degree of x in G. If g(x) = f(x) = k for
each x ∈ V (G), then a fractional (g, f)-factor is a fractional
k-factor. If k = 2, then a fractional k-factor is a fractional 2-
factor. A graph G is fractional k-covered if for each edge e of
G, there exists a fractional k-factor h, such that h(e) = 1. If
k = 2, then a fractional k-covered graph is called a fractional
2-covered graph. The other terminologies and notations not
given in this paper can be found in [2,3].

Zhou Sizhong [4–7] showed some sufficient conditions for
graphs to have factors. Liu Guizhen, et al. [8] studied the
fractional (g, f)-factors of graphs. Zhou Sizhong [9–12] gave
some sufficient conditions for graphs to have fractional factors.
Yan Guiying, et al. [13,14] obtained some sufficient conditions
for graphs to be fractional k-covered graphs. In this paper, we
give a sufficient condition for a graph to be a fractional k-
covered graph.

Anstee [15] obtained a necessary and sufficient condition
for a graph to have a fractional (g, f)-factor.

Lemma 1.1. ([15]). Let G be a graph, g and f be two
integer-valued functions defined on V (G) such that g(x) ≤
f(x) for all x ∈ V (G). Then G has a fractional (g, f)-factor
if and only if for any S ⊆ V (G),

g(T ) − dG−S(T ) ≤ f(S),

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ g(x)}.

For any S ⊆ V (G), let T = {x : x ∈ V (G)\S, dG−S(x) ≤
g(x)}, denote

δG(S, T ) = dG−S(T ) − g(T ) + f(S).

Li obtained a necessary and sufficient condition for a graph
to be fractional (g, f)-covered.

Lemma 1.2. ([13]). Let G be a graph, g and f be two
integer-valued functions defined on V (G) such that g(x) ≤
f(x) for all x ∈ V (G). Then G is fractional (g, f)-covered
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if and only if δG(S, T ) ≥ ε(S, T ) for any S ⊆ V (G) and
T = {x : x ∈ V (G) \ S, dG−S(x) ≤ g(x)}.
Where ε(S, T ) is defined as follows,

(1) ε(S, T ) = 2, if S is not independent.
(2) ε(S, T ) = 1, if S is independent and eG(S, V (G) \

(S ∪ T )) ≥ 1, or there exists an edge e = uv, such that
u ∈ S, v ∈ T and dG−S(v) = g(v).

(3) ε(S, T ) = 0, if neither (1) nor (2) holds.

If f(x) = g(x) = k for all x ∈ V (G), we have

Lemma 1.3. ([13]). Let G be a graph and k > 0 be an
integer. Then G is fractional k-covered if and only if for all
S ⊆ V (G) and T = {x : x ∈ V (G) \ S, dG−S(x) ≤ k},

k−1∑
j=0

(k − j)pj(G− S) ≤ k|S| − ε(S, T ),

where pj(G−S) denote the number of vertices in G−S with
degree j.

II. THE MAIN RESULT AND ITS PROOF

Theorem 1. Let G be a graph, δ(G) ≥ 4. If bind(G) > 5
3 ,

then graph G is fractional 2-covered.

Proof. Suppose that bind(G) > 5
3 and G is not fractional

2-covered. By Lemma 1.3, there exists S0 ⊆ V (G) such that

2p0(G− S0) + p1(G− S0) > 2|S0| − ε(S0, T ). (1)

Let T0 = {x : x ∈ V (G) \ S0, dG−S0(x) = 0}, T1 = {x :
x ∈ V (G)\S0, dG−S0(x) = 1}. We have |T0| = p0(G−S0) =
i(G− S0) and |T1| = p1(G− S0). The proof splits into three
cases.

Case 1. T1 = ∅
Subcase 1.1. S0 = ∅. We have ε(S0, T ) = 0.
Since δ(G) ≥ 4 and S0 = ∅, we get

p0(G− S0) = 0.

By (1), we obtain

0 = 2p0(G− S0) + p1(G− S0) > 2|S0| − ε(S0, T ) = 0,

which is contradicted.
Subcase 1.2. |S0| = 1. We have ε(S0, T ) ≤ 1.
Since δ(G) ≥ 4 and |S0| = 1, we obtain

p0(G− S0) = 0.

It follows from (1) that

0 = 2p0(G−S0)+p1(G−S0) > 2|S0|−ε(S0, T ) ≥ 2−1 = 1,

a contradiction.
Subcase 1.3. 2 ≤ |S0| ≤ 3. We get ε(S0, T ) ≤ 2.
Since δ(G) ≥ 4 and 2 ≤ |S0| ≤ 3, thus

p0(G− S0) = 0.

According to (1), we have

0 = 2p0(G−S0)+p1(G−S0) > 2|S0|−ε(S0, T ) ≥ 4−2 = 2,

a contradiction.
Subcase 1.4. |S0| ≥ 4. We get ε(S0, T ) ≤ 2.

By (1), we have

2p0(G− S0) = 2p0(G− S0) + p1(G− S0)
> 2|S0| − ε(S0, T ) ≥ 6.

So
p0(G− S0) > 3.

We write X for the set of isolated vertices of G− S0, it is
easily seen that 4 ≤ |X| = p0(G− S0) and |NG(X)| ≤ |S0|.
Thus

5
3
< bind(G) ≤ |NG(X)|

|X| ≤ |S0|
p0(G− S0)

.

So

2|S0| > 10
3
p0(G− S0).

It follows from (1) that

10
3
p0(G− S0) < 2|S0|

< 2p0(G− S0) + p1(G− S0) + ε(S0, T )
≤ 2p0(G− S0) + 2.

Thus

p0(G− S0) <
3
2
,

which contradicts p0(G− S0) > 3.
Case 2. T1 �= ∅ and T1 = NG−S0(T1)
By the definition of T1, we have |T1| = 2r (r be positive-

integer).
Subcase 2.1. 2 ≤ |T1| ≤ 4
Since δ(G) ≥ 4, we get

|S0| ≥ 3.

Subcase 2.1.1. p0(G− S0) = 0
By (1), we get

4 ≥ |T1| = p1(G− S0)
= 2p0(G− S0) + p1(G− S0)
> 2|S0| − ε(S0, T ) ≥ 6 − 2 = 4,

a contradiction.
Subcase 2.1.2. p0(G− S0) ≥ 1
Let X = T0∪T1, then |NG(X)| ≤ |S0|+p1(G−S0). Thus

5
3
< bind(G) ≤ |NG(X)|

|X| ≤ |S0| + p1(G− S0)
p0(G− S0) + p1(G− S0)

.

So

2|S0| >
10
3
p0(G− S0) +

4
3
p1(G− S0)

= 2p0(G− S0) + p1(G− S0) +
4
3
p0(G− S0)

+
1
3
p1(G− S0)

≥ 2p0(G− S0) + p1(G− S0) + 2,

which contradicts (1).
Subcase 2.2. |T1| ≥ 6
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For any u ∈ T1, let X = T0 ∪ (T1 − u), then |X| =
p0(G−S0)+p1(G−S0)−1, |NG(X)| ≤ |S0|+p1(G−S0)−1,
we have

5
3
< bind(G) ≤ |NG(X)|

|X| ≤ |S0| + p1(G− S0) − 1
p0(G− S0) + p1(G− S0) − 1

.

So
3|S0| ≥ 5p0(G− S0) + 2p1(G− S0) − 1,

that is,

2|S0| ≥ 10
3
p0(G− S0) +

4
3
p1(G− S0) − 2

3

= 2p0(G− S0) + p1(G− S0) +
4
3
p0(G− S0)

+
1
3
p1(G− S0) − 2

3

≥ 2p0(G− S0) + p1(G− S0) + 2 − 2
3
.

By the integrity of |S0|, p0(G − S0) and p1(G − S0), we
have

2|S0| ≥ 2p0(G− S0) + p1(G− S0) + 2
≥ 2p0(G− S0) + p1(G− S0) + ε(S0, T ),

this contradicts (1).
Case 3. T1 �= ∅ and T1 �= NG−S0(T1)
There exists u ∈ NG−S0(T1)\T1, such that dG−S0(u) ≥ 2.

Let r be the edge number in [T1]G−S0 , we write X = S0 ∪
(NG−S0(T1)−T1−u). By the definition of T1, we can easily
obtain

|X| ≤ |S0| + p1(G− S0) − 2r − 1

and

i(G−X) ≥ i(G− S0) + (p1(G− S0) − 2r) + r

= P0(G− S0) + p1(G− S0) − r

≥ p0(G− S0) +
1
2
p1(G− S0) > 0.

We write Y for the set of isolated vertices of G−X , then |Y | =
i(G−X) and |NG(Y )| ≤ |X| ≤ |S0|+ p1(G−S0)− 2r− 1.
Thus

5
3

< bind(G) ≤ |NG(Y )|
|Y |

≤ |S0| + p1(G− S0) − 2r − 1
p0(G− S0) + p1(G− S0) − r

≤ |S0| + p1(G− S0) − 1
p0(G− S0) + p1(G− S0)

.

So
3|S0| ≥ 5p0(G− S0) + 2p1(G− S0) + 3,

that is,

2|S0| ≥ 10
3
p0(G− S0) +

4
3
p1(G− S0) + 2

≥ 2p0(G− S0) + p1(G− S0) + ε(S0, T ),

which contradicts (1).
From all the cases above, we deduced the contradiction.

Hence, G is fractional 2-covered.

Remark. In the proof of Theorem 1, it is required that
bind(G) > 5

3 . But I do not know whether the condition can
be placed by bind(G) ≥ 5

3 .

Finally we present the following problem.

Problem 1. Find the relationship between binding number
and fractional k-covered graph, where k is any positive integer.

Problem 2. Find the relationship between binding number
and fractional (g, f)-covered graph, where g and f is two
nonnegative integer-valued functions defined on V (G) such
that g(x) ≤ f(x) for each x ∈ V (G).

ACKNOWLEDGMENT

This research was sponsored by Qing Lan Project of Jiangsu
Province and was supported by Jiangsu Provincial Educational
Department (07KJD110048).

REFERENCES

[1] D.R. Woodall, The binding number of a graph and its Anderson number,
J.Combin. Theory ser. B 15(1973), 225–255.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, London,
The Macmillan Press, 1976.

[3] Edward R. Schinerman and D.H. Ullman, Fractional Graph Theory, John
Wiley and Son. Inc. New York, 1997.

[4] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs,
Discrete Mathematics 309(12)(2009), 4144–4148.

[5] S. Zhou, A new sufficient condition for graphs to be (g, f, n)-critical
graphs, Canadian Mathematical Bulletin, to appear.

[6] S. Zhou, A sufficient condition for a graph to be an (a, b, k)-critical
graph, International Journal of Computer Mathematics, to appear.

[7] S. Zhou and Y. Xu, Neighborhoods of independent sets for (a, b, k)-
Critical Graphs, Bulletin of the Australian Mathematical Society
77(2)(2008), 277–283.

[8] G. Liu and L. Zhang, Fractional (g, f)-factors of graphs, Acta Math.
Scientia (Ser. B) 21(4)(2001), 541–545.

[9] S. Zhou and Q. Shen, On fractional (f, n)-critical graphs, Information
Processing Letters 109(14)(2009), 811–815.

[10] S. Zhou, Some results on fractional k-factors, Indian Journal of Pure
and Applied Mathematics 40(2)(2009), 113–121.

[11] S. Zhou and H. Liu, Neighborhood conditions and fractional k-factors,
Bulletin of the Malaysian Mathematical Sciences Society 32(1)(2009),
37–45.

[12] S. Zhou and C. Shang, Some sufficient conditions with fractional
(g, f)-factors in graphs, Chinese Journal of Engineering Mathematics
24(2)(2007), 329–333.

[13] Z. Li, G. Yan and X. Zhang, On fractional f -covered graphs, OR
Trasactions (in Chinese) 6(4)(2002), 65–68.

[14] Z. Li, G. Yan and X. Zhang, Isolated toughness and fractional k-covered
graphs, Acta mathematicae Applicatae Sinica 27(4)(2004), 593–598.

[15] R. R. Anstee, An Algorithmic Proof Tutte’s f -Factor Theorem, J.
Algorithms 6(1985), 112–131.

Sizhong Zhou was born in anhui province, China. He received his BSc and
MSc from China University of Mining and Technology. Since 2003 he has
been at School of Mathematics and Physics in the Jiangsu University of
Science and Technology, where he was appointed as a lecturer of mathematics
in 2005 and an associate professor of mathematics in 2009. More than 60
research papers have been published in national and international leading
journals. His current research interests focus on graph theory.

Yang Xu was born in shandong province, China. She received her BSc and
MSc from China University of Mining and Technology. Since 2005 she has
been at Department of Mathematics in the Qingdao Agricultural University,
where she was appointed as a lecturer of mathematics in 2008. Her current
research interests focus on graph theory.


