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 
Abstract—Using the quantum hydrodynamic (QHD) model the 

nonlinear properties of ion-acoustic waves in are lativistically 
degenerate quantum plasma is investigated by deriving a nonlinear 
Spherical Kadomtsev–Petviashvili (SKP) equation using the standard 
reductive perturbation method equation. It was found that the 
electron degeneracy parameter significantly affects the linear and 
nonlinear properties of ion-acoustic waves in quantum plasma. 
 

Keywords—Kadomtsev-Petviashvili equation, Ion-acoustic 
Waves, Relativistic Degeneracy, Quantum Plasma, Quantum 
Hydrodynamic Model. 

I. INTRODUCTION 

HEinvestigation of ultra-dense matter has been carried out 
quite extensively and intensively in the recent years. Such 

matter is found in metal nanostructures, neutron stars, white 
dwarfs and other astronomical bodies as well as in laser 
plasma interaction experiments. In such situations the average 
inter-fermionic distance is comparable or even less than the 
thermal de Broglie wavelength and as a result the quantum 
degeneracy becomes important. In such extreme conditions of 
density the thermal pressure of electrons may be negligible as 
compared to the Fermi degeneracy pressure which arises due 
to the Pauli Exclusion Principle. However in this case the 
quantum effect can’t be neglected and proper mathematical 
modelling becomes necessary. Such quantum effects are 
generally studied with the help of two well-known 
formulations, the Wigner-poisson and the Schrodinger 
Poisson formulation. The former one studies the quantum 
kinetic behavior of plasmas while the latter describes the 
hydrodynamic behaviour of plasma waves. The quantum 
hydrodynamic (QHD) model is derived by taking the velocity 
space moments of the Wigner equations. The QHD model 
modifies the clasical fluid model for plasmas with the 
inclusion of a quantum correction term generally known as the 
Bohm potential. The model also incorporates the quantum 
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statistical effect through the equation of state. The model has 
been widely used to study quantum behaviour of plasma. A 
survey of the available literature [1]-[17] shows that most of 
the works done in quantum plasma in order to study the 
nonlinear behaviour of different plasma waves uses non 
relativistic case or with weakly relativistic approximation. The 
matter in some compact astrophysical objects (e.g. white 
dwarfs, neutron stars, magnetars etc.) exists in extreme 
conditions of density. In such situations the average inter-
Fermionic distance is comparable to or less than the thermal 
de Broglie wavelength and hence quantum degeneracy effects 
become important. At extreme high densities the thermal 
pressure of electrons may be negligible as compared to the 
Fermi degeneracy pressure which arises due to implications of 
Pauli’s exclusion principle. In such extreme conditions of 

density the electron Fermi energy EFe[  3 22 23 2e en m  ] may 
become comparable to the electron rest mass energy (mec

2) 
and the electron speed can approach the speed of light (c) in 
vacuum. So the plasma in the interior of such compact 
astrophysical objects is both degenerate and relativistic. Such 
a plasma is also likely to be produced in the next generation 
laser based plasma compression schemes. Under such 
conditions quantum and relativistic effects are unavoidable. 
Recent reviews of quantum plasma physics are carried out by 
[18] as well as by [19]. However regarding the ion-acoustic 
waves in degenerate quantum plasmas only a few works have 
been reported. Misra et al. [20] have investigated the 
modulational instability of EAWs in non-relativistic quantum 
plasma consisting of two distinct groups of electrons and 
immobile ions. The propagation of electron-acoustic solitary 
waves in a two-electron temperature quantum magnetoplasma 
has also been reported [21]. All these works use quantum 
hydrodynamic models and consider only the non-relativistic 
cases. But in extreme conditions of density such as in a typical 
white dwarf where the electron number density can be as high 
as 1028 cm-3 the degeneracy can be relativistic and both 
quantum and relativistic effects should be taken into account. 
Recent investigations indicate that such quantum-relativistic 
plasmas can support solitary structures at different length 
scale of excitation [22], [23]. The nonlinear propagation of 
ion-acoustic waves in relativistically degenerate quantum 
plasma has been studied by a few authors [24],[25]. Very 
recently we have investigated the solitary excitations of 
EAWs in a two electron populated relativistically degenerate 
super-dense plasma and shown that relativistic degeneracy 
significantly influences the conditions of formation and 
properties of solitary structures [26], [27]. To the best of our 
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knowledge no investigation has been made for the non-planar 
wave propagation of ion-acoustic waves in degenerate 
quantum plasmas including relativistic effects. The motivation 
of the present paper is to investigate the solitary structures of 
IAWs in relativistically degenerate dense quantum plasma by 
applying Kadomtsev-Petviashvili equation. 

II. BASIC FORMULATION AND NONLINEAR ANALYSIS 

We consider a two-species quantum plasma system 
comprised of electrons and ions. We also first take the 
pressures for both electrons and ions via the so called fluid 
pressure equations. The governing equations are 
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Here, p  is the relativistic degeneracy pressure in dense 

plasma given by [28] 
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being the speed of light in vacuum.
Fp 

is the electron Fermi 

relativistic momentum. It is to be noted that in the limits of 
very small and very large values of relativity parameter Rα, we 
obtain:  
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Here, , ,n v q  


 are the density, mass, velocity and charge for 

the α-species particle respectively with α=e for electrons and  
for ions ( , )e iq e q e   . Also 

( )e ip is the electron (ion) 

pressure, is the Reduced Plank’s constant divided by 2π.  
Now using the following suitable normalizations, i.e. 
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in which

0 0 0;Te i Fn n n   is the α-particle Fermi temperature, 

φ is the electrostatic potential 
s B Fe ic k T m  is the ion-sound 

speed and 2
04p n e m    is the particle plasma frequency, and 

choosing the coordinates (r, θ, t), Now considering the fact 
that 211 RP
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the basic (1)-(4) can be written in the 

following normalized form: 
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where, , vu 

are the velocity components of α-species 

particles in the radial (r) and polar angle (θ) direction, 
T , m ,Fi Fe i e pe B FeT m m H w k T     is the non-dimensional 

quantum parameter. 

III. DERIVATION OF THE KADOMTSEV-PETVIASHVILI EQUATION 

In order to investigate the propagation of ion-acoustic (IA) 
waves in the quantum plasmas, we employ the standard 
reductive perturbation technique to obtain the Kadomtsev-
Petviashvili equation (SKPE). The independent variables are 

stretched as 1 2 1 2 3 2
0( ), ,r v t t           and the 

dependent variables are expanded as: 
 

2
1 21 ..............n n n            (16) 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:5, 2015

296

 

 

2
1 21 ..............u u u            (17)  

 
3 2 5 2

1 21 ..............v v v            (18) 

 
2 3

1 2 31 ..............              (19) 

 
2

1 21 ..............p p p            (20) 

 
where α=e for electrons and I for ions. 

Now, substituting (20) in (10)-(15) and collecting the terms 
in different powers of ε, we obtain in the lowest order of ε as 
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relativistic pressure in weakly relativistic case, whereas for 
ultra-relativistic case 
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Equation (29) shows that the wave can propagate outward or 
inward depending on the consideration of the sign. For the 
next higher order in ε we obtain 
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Now we eliminate the second order quantities from (30)-

(36) by means of (21)-(29) 
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Now in order to solve the equation we transform the set of 
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Next eliminating the second order quantities from (30)–(36) 

by means of (21)-(29) we obtain the variable coefficient 
SKPE as: 
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Now if the angular dependence can be neglected, the SKPE 

(62) reduces to usual KdV equation. If we assume the 
similarity solution, viz. 
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Then (62) reduces under the suitable boundary conditions (66) 
to the following standard Korteweg-de Vries equation 
(67)with solution as (68): 
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In order to study the effects of relativistic degeneracy 

parameter F (which depends on R), Quantum diffraction 
parameter (H) and ion temperature (σ) we have made plots in 
Figs. 1-3. 

 

 

Fig. 1 Solitary profiles for different value of F 
 

 

Fig. 2 Solitary profiles for different value of H 
 

 

Fig. 3 Solitary profiles for different value of σ 

IV. DISCUSSION AND CONCLUSION 

As the relativistic degeneracy parameter F determines the 
transition from ultrarelativistic to non relativistic cases it is 
important to know how it affects the structure and properties 
of ion-acoustic waves in a quantum plasma.It has been found 
that relativistic degeneracy effects have little effect in the 
properties of solitary profiles. On the other hand as quantum 
diffraction parameter increases the solitary structures become 
more narrow but the amplitude remains almost constant [26]. 
Ion temperature has very minute effect on solitary profiles in 
plasmas. Finally we would like to point out that the 
investigation presented here may be helpful in the 
understanding of the basic features of long wavelength 
electron plasma waves in dense and hot plasmas such as can 
be found in white dwarfs, neutron stars and intense laser-solid 
plasma experiments. 
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