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Abstract—In this paper, we consider the nonlinear delay dynamic
system

xΔ(t) = p(t)f1(y(t)), yΔ(t) = −q(t)f2(x(t− τ)).

We obtain some necessary and sufficient conditions for the existence
of nonoscillatory solutions with special asymptotic properties of
the system. We generalize the known results in the literature. One
example is given to illustrate the results.

dimensional.

I. INTRODUCTION

IN this paper we investigate the nonlinear delay dynamic
system {

xΔ(t) = p(t)f1(y(t)),

yΔ(t) = −q(t)f2(x(t− τ)).
(1)

where p(t), q(t) are real rd-continuous nonnegative functions
defined on t ∈ [t0,∞)T = [t0,∞)

⋂
T , p(t) is not identically

zero on t ∈ [t0,∞)T such that
∫∞
t0

p(t)Δt = ∞. Here, the
time scale T is unbounded. We assume throughout that fi :
R → R, i = 1, 2, are continuous functions with ufi(u) > 0
for u �= 0, i = 1, 2, and τ is a nonnegative constant.

By the solution of system (1), we mean a pair of non-
trivial real-valued functions (x(t), y(t)) which has property
y ∈ C1

rd([t0,∞)T , R), x ∈ C1
rd([t0 + τ,∞)T , R) and satisfies

system (1) for t ∈ [t0,∞)T . Our attention is restricted to those
solutions (x(t), y(t)) of system (1) which exist on some half-
line [tx,∞)T and satisfy sup{|x(t)| + |y(t)| : t ≥ tx} > 0
for any tx ≥ t0. As usual, a continuous real-valued function
defined on [T0,∞) is said to be oscillatory if it is neither
eventually positive nor eventually negative, otherwise it is
said to be nonoscillatory. A solution (x(t), y(t)) of system
(1) is called oscillatory if both x(t) and y(t) are oscillatory
(i.e.,neither eventually positive nor eventually negative), and
otherwise it will be called nonoscillatory. System (1) is called
oscillatory if its solutions are oscillatory.

The theory of time scales, which has recently received a lot
of attention, was introduced by Stefan Hilger in his Ph.D.thesis
in 1988 in order to unify continuous and discrete analysis
(see [1]). Not only can this theory of the so-called “dynamic
equations” unify the theories of differential equations and
difference equations, but also extend these classical cases to
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cases “in between”, e.g., to the so-called q-difference equations
and can be applied on other different types of time scales.
Since Hilger formed the definition of derivatives and integral
on time scales, several authors have expounded on various
aspects of this new theory; see the survey paper by Bohner
and Peterson [2] and references cited therein. A book on the
subject of time scales (see [3]) summarizes and organizes
much of time scale calculus. The reader is referred to Chapter
1 in [3] for the necessary time scale definitions and notations
used throughout this paper.

In recent years, there has been an increasing interest in
studying the oscillation and nonoscillatory of solutions of
dynamic equations on time scales with attempts to harmonize
the oscillation theory for the continuous and the discrete, to
include them in one comprehensive theory, and to eliminate
obscurity from both. We refer the readers to the paper [4-7] and
the references cited there in. The system (1) reduces to some
important second-order dynamic equations in the particular
case, for example

xΔΔ(t) + p(t)f(x(t− τ)) = 0, (2)

[r(t)xΔ(t)]Δ + p(t)f(x(τ(t))) = 0, (3)

xΔΔ(t) + p(t)xγ(t− τ) = 0, (4)

where p(t) is rd-continuous on [t0,∞)T . Some oscillation
results for these equations have been presented in [8-10].
When T = R and τ = 0, system (1) becomes the two-
dimensional differential system{

x′(t) = p(t)f1(y(t)),

y′(t) = −q(t)f2(x(t)),
(5)

whose oscillatory behavior has been investigated, see for
example [11] and the references cited there in. When T = N
and τ = 0, system (1) becomes the two-dimensional difference
system {

xΔ(t) = p(t)f1(y(t)),

yΔ(t) = −q(t)f2(x(t)),
(6)

whose oscillatory behavior has been investigated, see for
example [12] and the references cited there in.

On the other hand, recently, the theory of dynamic equations
on time scales has become an important research field due to
its tremendous potential for various applications. Since there
are few works about nonoscillation of dynamic systems on
time scales, motivated by [5,11-12], in the present paper we
investigate nonoscillatory properties for the systems (1) on
time scales. Our results not only unify the known results
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of differential and difference systems, but also extend and
improve the existing results of dynamic systems on time scales
in the literature. In the next section, we present some useful

fi(u), i = 1, 2 and fixed point theorem, we establish some
new sufficient and necessary conditions for the existence of
nonoscillatory solutions with special asymptotic properties for
the system (1). Examples are given to illustrate the
applicability of the obtained results.

II. PREPARATORY LEMMAS

In this section, we will give some lemmas which are
important in proving our main results. For convenience, we
will employ the following notation:

A(s, t) =

∫ t

s

p(τ)Δτ, s, t ∈ [t0,∞)T . (7)

Lemma 1 If (x(t), y(t)) is a nonoscillatory solution of
system (1), then the component x(t) is also nonoscillatory.

Proof. Assume to the contrary that x(t) is oscillatory but
y(t) is non-oscillatory. Without loss of generality, we let
y(t) > 0 on [t0,∞)T . In view of the first equation of system
(1), we have xΔ(t) ≥ 0 on [t0,∞)T . Thus x(t) > 0 or
x(t) < 0 for all large t, which leads to a contradiction. The
case where y(t) is eventually negative is similarly proved.

Lemma 2 Suppose lim
t→∞A(t0, t) = ∞ holds and

(x(t), y(t)) is a non-oscillatory solution of system (1). Then
there exist positive constants c1, c2, d2 , nonnegative constant
d1 and t1 ≥ t0 + τ such that

c1 ≤ x(t) ≤ c2A(t0 + τ, t), d1 ≤ y(t) ≤ d2,

or

−c2A(t0 + τ, t) ≤ x(t) ≤ −c1, −d2 ≤ y(t) ≤ −d1,

for t ≥ t1.
Proof. Without loss of generality, assume that x(t) > 0

for t ≥ t0. In view of the second equation of system (1), we
have yΔ(t) < 0 on [t0 + τ,∞)T . Thus , there are two cases:
y(t) > 0 and y(t) < 0 for t ≥ t0 + τ . If y(t) < 0, then we
have

xΔ(t) = p(t)f(y(t)) ≤ p(t)f(y(t0 + τ)) < 0,

which yields, after integrating ,

x(t) ≤ x(t0 + τ) +

∫ t

t0+τ

p(s)f(y(t0 + τ))Δs

= x(t0 + τ) + f(y(t0 + τ))

∫ t

t0+τ

p(s)Δs.

The left hand side tends to −∞ in view of lim
t→∞A(t0, t) = ∞,

which is a contradiction. Thus, y(t) > 0, yΔ(t) < 0 eventually,
and xΔ(t) > 0 eventually by the first equation of system (1).
Hence, lim

t→∞ y(t) exists and x(t) ≥ c1 eventually for some
positive constant c1. Furthermore, the same reasoning just used
also leads to

x(t) ≤ x(t0 + τ) + f(y(t0 + τ)A(t0 + τ, t), t ≥ t0 + τ.

Since lim
t→∞A(t0, t) = ∞, thus there is c2 such that x(t) ≤

c2A(t0 + τ, t) for all large t. The proof is complete.

III. MAIN RESULTS

In this section, we generalize and improve some results of
[8-12]. Some necessary and sufficient conditions are given
for the system (1) to admit the existence of nonoscillatory
solutions with special asymptotic properties.

Theorem 1 Suppose that lim
t→∞A(t0, t) = ∞ and fi, i = 1, 2

are nondecreasing. Then system (1) has a nonoscillatory
solution (x(t), y(t)) such that lim

t→∞x(t) = α �= 0 and
lim
t→∞ y(t) = 0 if and only if for some c �= 0

∫ ∞

t0

p(t)f1

(∫ ∞

t

q(s)f2(c)Δs

)
Δt < ∞. (8)

Proof. Suppose that (x(t), y(t)) is a nonoscillatory solution
of system (1) such that lim

t→∞x(t) = α �= 0 and lim
t→∞ y(t) =

0. Without loss of generality, we assume that α > 0. Then
there exist two positive constant c1, c2 and t1 ≥ t0 such that
c1 ≤ x(t) ≤ c2 for t ≥ t1. In view of the second equation of
system (1), we have

y(s)− y(t) = −
∫ s

t

q(u)f2(x(u− τ))Δu.

Let s → ∞ and noting that lim
t→∞ y(t) = 0, we have

y(t) =

∫ ∞

t

q(u)f2(x(u− τ))Δu,

for t ≥ t1. Thus, from the first equation of system (1), we see
that

∞ > α− x(t1 + τ)

=

∫ ∞

t1+τ

p(s)f1(y(s))Δs

=

∫ ∞

t1+τ

p(s)f1

(∫ ∞

s

q(u)f2(x(u− τ))Δu

)
Δs

≥
∫ ∞

t1+τ

p(s)f1

(∫ ∞

s

q(u)f2(c1)Δu

)
Δs.

Conversely, suppose that (8) holds, we may assume that c > 0
and choose t1 ∈ [t0,∞)T so large that∫ ∞

t1

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs ≤ c

2
. (9)

Let BC[t0 + τ,∞)T be the Banach space of all real-valued
rd-continuous functions on [t0 + τ,∞)T endowed with the
norm ‖x(t)‖ = supt∈[t0+τ,∞)T |x(t)| < ∞. We defined a
bounded convex, and closed subset Ω of BC[t0 + τ,∞)T as

Ω = {x ∈ BC[t0 + τ,∞)T :
c

2
≤ x(t) ≤ c}. (10)

Define an operator Γ : Ω → BC[t0 + τ,∞)T as follows:
(Γx)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c− ∫∞
t

p(s)f1
(∫∞

s
q(u)f2(x(u− τ))Δu

)
Δs,

t ∈ [t1 + τ,∞)T

c− ∫∞
t1+τ

p(s)f1
(∫∞

s
q(u)f2(x(u− τ))Δu

)
Δs,

t ∈ [t0 + τ, t1 + τ ]T .

(11)

lemmas. In Section III, by means of appropriate hypotheses on
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Now we show that Γ satisfies the assumptions of Schauder’s
fix-point theorem (see [13, Corollary 6]).

(i) We will show that Γ maps Ω into Ω. In fact, for any
x ∈ Ω and t ∈ [t1 + τ,∞)T , in view of

c ≥ (Γx)(t)

= c−
∫ ∞

t

p(s)f1

(∫ ∞

s

q(u)f2(x(u− τ))Δu

)
Δs

≥ c−
∫ ∞

t

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs

≥ c− c

2
=

c

2
.

Similarly, we can prove that c
2 ≤ (Γx)(t) ≤ c for any x ∈ Ω

and t ∈ [t0 + τ, t1 + τ ]T . Hence, (Γx)(t) ∈ Ω for any x ∈ Ω.
(ii) We prove that Γ is a completely continuous mapping.

First, we consider the continuity of Γ. Let xn ∈ Ω and
‖xn − x‖ → 0 as n → ∞. Since Ω is closed, then x ∈ Ω.
Consequently, by the continuity of fi, for any
t ∈ [t0 + τ, t1 + τ ]T , we have

lim
n→∞ |p(t)f1

(∫ ∞

t

q(s)f2(xn(s− τ))Δs

)
−

−f1

(∫ ∞

t

q(s)f2(x(s− τ))Δs

)
]| = 0. (12)

We also obtain that

p(t)|f1
(∫ ∞

t

q(s)f2(xn(s− τ))Δs

)

−f1

(∫ ∞

t

q(s)f2(x(s− τ))Δs

)
|

≤ 2p(t)f1

(∫ ∞

t

q(s)f2(c)Δs

)
. (13)

On the other hand, from (11) we have

|(Γxn)(t)− (Γx)(t)|

≤
∫ ∞

t1+τ

p(s)|f1
(∫ ∞

s

q(u)f2(xn(u− τ))Δu

)

−f1

(∫ ∞

s

q(u)f2(x(u− τ))Δu

)
|Δs, (14)

for t ∈ [t0 + τ, t1 + τ ]T and

|(Γxn)(t)− (Γx)(t)|

≤
∫ ∞

t

p(s)|f1
(∫ ∞

s

q(u)f2(xn(u− τ))Δu

)

−f1

(∫ ∞

s

q(u)f2(x(u− τ))Δu

)
|Δs, (15)

for t ∈ [t1 + τ,∞)T . Therefore, from (14) and (15), we have

‖(Γxn)(t)− (Γx)(t)‖

≤
∫ ∞

t1+τ

p(s)|f1
(∫ ∞

s

q(u)f2(xn(u− τ))Δu

)

−f1

(∫ ∞

s

q(u)f2(x(u− τ))Δu

)
|Δs. (16)

Referring to Chapter 5 in [14], we see that the Lebesgue
dominated convergence theorem holds for the integral on time
scales. Then, from (12) (13) (16) yields lim

n→∞ ‖Γxn−Γx‖ = 0,
which implies that Γ is continuous on Ω.

Next, we show that ΓΩ is uniformly cauchy. In fact, for any
ε > 0, take t2 ∈ [t1 + τ,∞)T and t2 > t1 such that∫ ∞

t2

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs ≤ ε. (17)

Then for any x ∈ Ω and t, r ∈ [t2,∞)T , we have

|(Γx)(t)− (Γx)(r)| ≤ |
∫ ∞

t+τ

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs|

+|
∫ ∞

r+τ

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs|

≤ 2

∫ ∞

t2

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs

≤ 2ε.

This means that ΓΩ is uniformly cauchy.
Finally, we prove that ΓΩ is equi-continuous on [t0+τ, t2]T

for any t2 ∈ [t0 + τ,∞)T . Without loss of generality, we set
t2 > t1. For any x ∈ Ω, we have |(Γx)(t)− (Γx)(r)| ≡ 0 for
t, r ∈ [t0 + τ, t1 + τ ]T and

|(Γx)(t)− (Γx)(r)| ≤ |
∫ ∞

t+τ

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs

−
∫ ∞

r+τ

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs|

≤
∫ r+τ

t+τ

p(s)f1

(∫ ∞

s

q(u)f2(c)Δu

)
Δs.

for t, r ∈ [t1 + τ, t2]T Now, we see that for any ε > 0, there
exists δ > 0 such that when t, r ∈ [t0+τ, t2]T with |t−r| < δ,
|(Γx)(t) − (Γx)(r)| < ε for any x ∈ Ω. This means that
ΓΩ is equicontinuous on [t0 + τ, t2]T for any t2 ∈ [t0 +
τ,∞)T . By Arzela-Ascoli theorem (see [13, lemma4]), ΓΩ
is relatively compact. From the above, we have proved that Γ
is a completely continuous mapping.

By Schauder’s fixed point theorem, there exists x ∈ Ω such
that Γx = x. Therefore, we have

x(t) = (Γx)(t)

= c−
∫ ∞

t

p(s)f1

(∫ ∞

s

q(u)f2(x(u− τ))Δu

)
Δs,

t ∈ [t1 + τ,∞)T . (18)

Set

y(t) =

∫ ∞

t

q(u)f2(x(u− τ))Δu, t ∈ [t1+ τ,∞)T . (19)

Then lim
t→∞ y(t) = 0 and yΔ(t) = −q(t)f2(x(t − τ)). On the

other hand,

x(t) = c−
∫ ∞

t

p(s)f1(y(s))Δs, (20)

which implies lim
t→∞x(t) = c and xΔ(t) = p(t)f1(y(t − τ)).

The proof is complete.
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Theorem 2 Suppose that lim
t→∞A(t0, t) = ∞ and fi, i =

1, 2 are nondecreasing. Then system (1) has a nonoscillatory
solution (x(t), y(t)) such that lim

t→∞x(t) = ∞ and lim
t→∞ y(t) =

β if and only if for some c �= 0∫ ∞

t0

|q(s)f2(cA(s, t0))|Δs < ∞. (21)

Proof. Suppose that (x(t), y(t)) is a nonoscillatory solution
of (1) such that lim

t→∞x(t) = ∞ and lim
t→∞ y(t) = β. Without

loss of generality, we assume that β > 0. From lemma 2, there
exists t1 ∈ [t0 + τ,∞)T and positive constant c1, c2, d1, d2
such that

c1 ≤ x(t) ≤ c2A(t0 + τ, t), d1 ≤ y(t) ≤ d2,

for t ∈ [t1,∞)T . According to the first equation in system
(1), we have

x(s) = x(t1) +

∫ s

t1

p(u)f1(y(u))Δu

≥ f1(d1)

∫ s

t1

p(u)Δu ≥ cA(s, t1). (22)

It follows from the second equation in system (1) that

∞ > y(t1 + τ)− β =

∫ ∞

t1+τ

q(t)f2(x(t− τ))Δt

≥
∫ ∞

t1+τ

q(t)f2(cA(t, t1))Δt, (23)

which implies that (21) holds.
Conversely, pick large t1 ≥ t0 + τ so large that∫ ∞

t1

q(s)f2(cA(s, t0))Δs < d =
f−1
1 (c)

2
. (24)

Let BC[t1,∞)T be the partially ordered Banach space of all
real-valued and rd-continuous functions x(t) with the norm
‖ x ‖= sup

t∈[t1,∞)T

|x(t)|
A(t1,t)

, and the usual pointwise ordering ≤.

Define

Ω = {x ∈ BC[t1,∞)T : f1(d)A(t1, t) ≤ x(t) ≤ f1(2d)A(t1, t)} .
It is easy to see that Ω is a bounded, convex and closed subset
of BC[t1,∞)T . Let us further define an operator
Γ : Ω → BC[t1,∞)T as follows:

(Γx)(t) =

∫ t

t1

p(s)f1

(
d+

∫ ∞

s

q(u)f(x(u− τ))Δu

)
Δs,

t ∈ [t1 + τ,∞)T . (25)

It is easy to see that the mapping Γ is nondecreasing. On the
other hand, Γ maps Ω into Ω. Indeed, if x ∈ Ω, then

f1(d)A(t1, t) ≤ (Γx)(t) ≤
∫ t

t1

p(s)f1 (d+ d)Δu)Δs

≤ f1(2d)A(t1, t).

The mapping Γ satisfies the assumptions of Knaster’s fixed-
point theorem [15]. By Knaster’s fixed-point theorem, we

ensures that the existence of an x ∈ Ω such that x = Γx,
this is

x(t) =

∫ t

t1

p(s)f1

(
d+

∫ ∞

s

q(u)f2(x(u− τ))Δu

)
Δs,

t ∈ [t1,∞)T .

Set

y(t) = d+

∫ ∞

t

q(u)f2(x(u− τ))Δu, t ∈ [t1,∞)T .

Then lim
t→∞ y(t) = d and yΔ(t) = −q(t)f2(x(t − τ)). On the

other hand, we have

x(t) =

∫ t

t1

p(s)f1(y(s))Δs,

which implies that lim
t→∞x(t) = ∞ and xΔ(t) = p(t)f1(y(t)).

The proof is complete.
Remark 1. Theorem 1 and2 improve the existing results of

[11,12].
Example 1. Consider the system

xΔ(t) = y(t), yΔ(t) = −tv−u(x(t− τ))r, (26)

where T = aN = {an|n ∈ N}, a, v, u, r > 0 and are
constants.

Let

p(t) = 1, f1(y) = y, q(t) = tv−u, f2(x) = xr.

It is easy to see that fi(x), i = 1, 2 are nondecreasing and
continuous with ufi(u) > 0 for u �= 0, i = 1, 2.
For u > v + 2, we have∫ ∞

t0

p(t)f1

(∫ ∞

t

q(s)f2(c)Δs

)
Δt

=

∫ ∞

t0

(∫ ∞

t

sv−ucrΔs

)
Δt

≤ |c|r
∫ ∞

t0

(∫ ∞

t

sv−uΔs

)
Δt

= |c|rav−u+2
∞∑

n=n0

∞∑
k=n

kv−u

= |c|rav−u+2
∞∑

n=n0

nv−u < ∞.

That is, (8) holds. By Theorem 1, system (26) has a
nonoscillatory solution (x(t), y(t)) such that lim

t→∞x(t) = α

and lim
t→∞ y(t) = 0.

On the other hand, For u > v + r + 1, we obtain∫ ∞

a

|q(s)f2(cA(s, a))|Δs =

∫ ∞

a

sv−u[c(s− a)]rΔs

≤ |c|r
∫ ∞

a

sv−u+rΔs

= |c|rav−u+r+1
∞∑

n=1

nv−u+r

< ∞.
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Hence, (21) holds. By Theorem 2, system (26) has a
nonoscillatory solution (x(t), y(t)) such that lim

t→∞x(t) = ∞
and lim

t→∞ y(t) = β.
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