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Nonlinear Structural Behavior of Micro- and
Nano-Actuators Using the Galerkin Discretization
Technique
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Abstract—In this paper, the influence of van der Waals, as well
as electrostatic forces on the structural behavior of MEMS and
NEMS actuators, has been investigated using of a Euler-Bernoulli
beam continuous model. In the proposed nonlinear model, the
electrostatic fringing-fields and the mid-plane stretching (geometric
nonlinearity) effects have been considered. The nonlinear integro-
differential equation governing the static structural behavior of the
actuator has been derived. An original Galerkin-based reduced-order
model has been developed to avoid problems arising from the
nonlinearities in the differential equation. The obtained reduced-order
model equations have been solved numerically using the Newton-
Raphson method. The basic design parameters such as the pull-in
parameters (voltage and deflection at pull-in), as well as the
detachment length due to the van der Waals force of some
investigated micro- and nano-actuators have been calculated. The
obtained numerical results have been compared with some other
existing methods (finite-elements method and finite-difference
method) and the comparison showed good agreement among all
assumed numerical techniques.
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1. INTRODUCTION

ECENTLY, the field of micro- and nanostructures has
started to lead as a significant and promising
representative for exceptional technology that has resulted in
major changes in many industries. These micro- and nano-
scale devices have shown to be very promising in replacing
bulky macro-scale actuators and sensors by reducing
manufacturing costs, the bulkiness of the prototyped systems,
and effectively decreasing weight and power consumption,
while increasing overall performance, production volume, and
functionality. These advantages have led to the field of micro-
and nano-electromechanical systems (MEMS and NEMS) to
generate substantial interest in the scientific community in
recent years. MEMS technology has already had a significant
impact on the areas of medical, automotive, aerospace, and
sensors and actuators technology [1]-[6]. Some prospective
applications of NEMS include random access memory, nano-
tweezers, and super-sensitive sensors [7]-[10], etc.
There are some basic differences in modeling the behavior
of MEMS and NEMS structures. For example, the van der
Waals force interactions, which can be neglected when
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designing MEMS structures, are in fact prominent in some
NEMS devices [11].
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Fig. 1 Parallel-plates DC electrostatic actuation and the pull-in

instability

The majority of MEMS and NEMS devices showed high
interest in using the electrostatic field as a prominent actuation
method. Among the numerous electrostatic actuation methods
for these tiny devices, the parallel-plates method is the most
reputable technique because of its simplicity and high
efficiency [12]. It is the most common actuation method,
where, a movable micro- or nano-electrode is deflected under
the effect of an electrostatic load of Vpc applied through a
fixed electrode (the gate), Fig. 1 (a). In this simple actuation
method, the electric charge generates an electric field around
it. Then, the electric field creates a force on the charged
particle. Since, the electric charge generates an electric field
around the two electrodes; the field creates an electrostatic
force on the electrodes. As the electric load increases, the
movable electrode deflects and moves towards the stationary
one, Fig. 1 (a). If the electrostatic voltages exceed a certain
limit value, this leads to a sudden failure (inherent instability)
of the structure in which the movable electrode hits the
stationary electrode, Fig. 1 (b). This happens because the
microbeam’s restoring force can no longer resist the
contrasting electrostatic force. This structural instability
phenomenon is known as pull-in and the associated voltage is
called pull-in voltage (Vpurin) [13], [14]. The corresponding
gap is called the pull-in deflection. Voltage and deflection in
this state together are also called the pull-in parameters of the
MEMS/NEMS actuator. This phenomenon may be considered
as a desirable (mainly for switches) or an undesirable (mainly
for resonators) phenomenon; so there is a need to calculate
exactly the pull-in parameters. Many studies have addressed
the pull-in phenomenon and presented tools to predict its
occurrence, enabling MEMS and NEMS designers to depict it
accurately [13]-[20]. Nevertheless, many studies [21]-[25],
especially in the NEMS field, did not investigate carefully
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some key parameters that may influence the exact extraction
of the pull-in parameters for a nanostructure. For example,
Dequesnes et al. [21] calculated numerically the pull-in
voltage of carbon nanotubes based NEMS switches
considering the effects of the van der Waals effects; however,
omitting its influence on the pull-in gap. Another group [22],
[23] studied the adhesion problem of two single-walled carbon
nanotubes and the collapse of one single-walled carbon
nanotube based on continuum analysis. Both studies
concluded the significant influence of the van der Waals force
on the structural stability of single-walled carbon nanotubes.
Another group [24] studied the structural behavior of NEMS
actuators assuming the Casimir effect. They determined the
needed detachment length of the nano-switches to not stick to
the substrate. Wang et al. [25] used Galerkin-based reduced-
order modeling to discretize the governing equations for the
pull-in of carbon nano-tweezers under the effect of van der
Waals forces.

From the above mentioned investigations, one can note that
a robust and systematic method for pull-in parameters
calculation for the NEMS actuator is needed. The objective of
this research is to develop a novel method for these above-
mentioned NEMS parameters calculation. For this, the
mechanical behavior of a clamped-clamped NEMS actuator is
investigated based on a continuous Euler-Bernoulli beam
model. To get the needed pull-in parameters, the nonlinear
governing differential equation is to be solved numerically.
Various methods can be used in this regards such as the Finite-
Element Method [26], Finite-Difference Method [27],
Shooting Method [28], [29], and Differential-Quadrature
Method [27], etc., which are considered to be computationally
expensive and in some cases unstable, since some rely on
initial guesses. In this paper, we propose to use Galerkin-based
reduced-order modeling that transforms the nonlinear
governing differential equation into nonlinear algebraic
equations system (for a static problem). Then, we propose to
solve the nonlinear algebraic equations using some powerful
numerical scheme. Our presented results show the efficiency
and accuracy of the proposed method. The influence of the
van der Waals force, the axial stress, and the fringing field
effects are investigated on the pull-in parameters (gap and
voltage) of a nano-actuator. The detachment length of the
clamped-clamped nano-actuator is also examined.

In the coming sections, the governing equations of the
proposed actuator are first presented. Then, description of the
reduced-order model is presented. The static problem of the
electrostatic actuator under a DC load are solved and
discussed. And finally, the main results of this theoretical
investigation are summarized in the conclusion section.

II. PROBLEM FORMULATION

In this section, we formulate the model governing the
mechanical behavior of an electrostatic actuator under the
effect of van der Waals forces. We consider a flexible doubly-
clamped prismatic nanobeam, Fig. 2 (a). The length of the
beam is L, its cross-section area is 4 = bh, its second moment

area is Iy= bh3/12, where b and h are the width and the

thickness of the beam, respectively. The beam is assumed to
be made of homogeneous isotopic linearly elastic material
with density p, Young’s modulus £ and Poisson’s ratio v.
Since the width b of the microbeam is somehow larger than its
thickness /4, we suggest to use an effective modulus of

elasticity E' = E/2(1-*) [30].

Actuator

Anchor Anchor
Electrode

(b)

Fig. 2 (a) 3D schematic and (b) in- plane view of the electrostatically-
actuated actuator

Hereafter, (") denotes dimensional quantities. The
microbeam is free to deflect in the (X,Z) plane, while its

clamped ends are constrained in both lateral Z and axial X
directions by unmovable anchors. The beam is actuated by an
electrostatic force assumed to have only a Z -component by a
grounded electrode located underneath the beam and with an
initial gap distance d in the Z direction, Fig. 2 (b). The
nanobeam is described in the framework of the Euler-
Bernoulli theory, since we are assuming that h « L and that the
deflections, while comparable with the thickness of the beam,
are small with respect to the beam’s length. In addition, we
assume that the axial and rotary inertia are negligible
compared with the transverse inertia. Under these common
assumptions, (1), describing the in-plane static displacement
w(x) of the above described actuator can be written as [31],

[32].

L

' E'A| [(aw) &% A .
B =71 J[d)‘c] |~ F (Ve )+ P, (B7,,), (D

0

where the functions £, (W,V,.) and £, (%,7,, ) represent the

vdw
distributed electrostatic force and the van der Waals force per
unit length arising between the two parallel electrodes,
respectively.

Considering the electric fringing-fields effect, the
electrostatic force per unit length of the beam can be
approximated as [33], [34]
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where &, =8.854x107 C*N"'m? is the permittivity of free
space and V- is the DC voltage applied between the moving

electrode and the stationary one separated by an initial gap
distance of d.

The van der Waals force per unit length of for the
considered nano-actuator can be approximated as [35].

- ,yvdeb

Fg (W7, ) = m 3)

where H =4.4x107" J is the Hamaker constant, and 7, is

an introduced detuning parameter, which is defined to be
positive and not exceeding one. This book-keeping parameter
will govern the importance of the van der Waals force: if it is
close to zero, this means that the van der Waals force is of
minimal amplitude, and hence negligible. If this coefficient is
close to one, this means that the van der Waals force is at its
maximum amplitude.

&
dx

div

v(0)=0,
#(0) &

(0)=0, Ww(L)=0, —(L)=0, ¥

For convenience, we introduce the following non-
dimensional variables:

) )

By substituting (5) into (1)-(4), the normalized equation of
motion and associated boundary conditions for the considered
clamped-clamped actuator are written as:

d4W:ag J[@]de aztv a V2 1+0_65(1—V:V()2))]+ L
act ) lox) ot (1-w) b (1-(®)
0
(6)
dw dw
w(0)=0, —(0)=0, w(l)=0, —(1)=0, 7
(0)=0. ZX(0)=0. w(i)=0. 2(1) )
where
Ad>  (dY &bl
%= =% Y-
3)

YoanFIOL' b
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The solution of the nonlinear differential equation, (6)-(8),
cannot be calculated analytically in a closed form, but will be
approximated numerically in the next section.

III. NUMERICAL MODEL

We propose here to solve the nonlinear problem of the
electrostatic actuator, (6)-(8), in order to predict its pull-in
parameters. There are various methods such as Finite-
Elements Method (FEM), Finite-Difference Method (FDM),
Reduced-Order Modeling (ROM) technique, etc., to solve
such nonlinear equations. We propose here to use the latter
approach. In this regards, (6)-(8) are discretized using the
Galerkin procedure to yield a ROM [36]. Hence, the static
deflection of the actuator is approximated as:

n

w(x) = Zai@ (x), ©

i=1

where ¢l(x) are the normalized linear undamped mode

shapes of a clamped-clamped beam and a, are the unknown
constant coefficients for each respective assumed mode-
shapes in the Galerkin discretization, (9). To obtain the ROM
discretized equations, we substitute (9) into (6)-(8), multiply
by ¢ (x) , use the orthogonality conditions of the mode shapes,

and then integrate the outcome from 0 to 1. This results in a
system of nonlinear algebraic equations in terms of the
unknown coefficientsq;. The system is then solved

numerically using the Newton-Raphson method [37].

We should mention here that the mode shapes ¢, (x) will
remain embedded inside the denominator of the electrostatic,
as well as the van der Waals forces functions in the ROM
equations. To deal with the complicated integral terms due to
the nonlinear forces, we simultaneously evaluate the spatial
integrals containing the mode shapes ¢, (x) numerically, while

solving the algebraic equations with respect to the unknown
coefficients a; (11).

IV. RESULTS

As a case study, we consider clamped-clamped MEMS and
NEMS actuator, made both of Polysilicon respectively, and
which the geometrical and material properties are summarized
in Table I.

TABLE I
GEOMETRICAL AND MATERIAL PROPERTIES OF THE ACTUATORS

Symbol MEMS Actuator Case NEMS Actuator Case

b 50 um 100 nm
h 3 um 50 nm
E' 166 GPa 166 GPa
d 1 um 50 nm
L 250-350 pum 12 um

We start first by solving the problem considering the
MEMS actuator case of Table I. We propose to compare our
ROM results with two other distinct numerical methods. We
first used a 3D FEM simulator, and then implemented a finite-
difference scheme. We also assumed the case without the van
der Waals effects, which are usually not prominent in the
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MEMS scale. We should mention here that the FEM results
were obtained through an ANSYS model, consisting of a
coupled  electrostatic-structural ~ element  (TRANS126
elements) to model the electrostatic coupling between the
beam and a ground electrode. This element is a two nodes
element which has one structural degree of freedom and an
electrical potential between the nodes. One end of each
element is held fixed, while the other is coupled to a structural
node in the beam. A voltage difference is applied across the
TRANSI126 element, which creates an attractive force that is
resisted by the stiffness of the beam. The FDM were
implemented by discretizing the space domain (x) into n+1
points, while enforcing the boundary conditions around x,

and x, . Consequently, the space domain is discretized using

n equally-spaced points. At each of these points, we have to
write the nonlinear equation of motion. This yields a set of
nnonlinear algebraic equations. Then, a two-step explicit
central-difference scheme is used to approximate the space
derivatives. The resultant equations can be solved for the
deflection unknowns at each selected point using the Newton-
Raphson method.

TABLEII
THE CALCULATED PULL-IN VOLTAGES FOR THE MEMS ACTUATOR OF TABLE
I ASSUMING THREE DIFFERENT METHODS

ROM
Length (V=5 N (9)) FEM FDM
L=250 pm 20.4 20.7  20.1
L=350 um 39.2 39.8 393

The results generated using all three distinct methods are
summarized in Table II. We clearly notice from the table that
five modes ROM results are in excellent agreement with the
results of both FEM and FDM. This confirms that the
proposed ROM method is converging without any numerical
instability problems.

Now, we examine the convergence of the ROM as the
number of modes is increased (increasing n in the Galerkin
expansion, (9)). Fig. 3 shows the maximum static deflection of
the NEMS actuator of Table I using one, four, and five modes
in the ROM. Shown results were simulated while neglecting
the stretching effect (o, =0) and while taking both the van

der wall and the electric fringing-fields effects into
consideration (,,,, @, #0). It follows from Fig. 3 that using

four modes in the ROM yields acceptable converged results.
The same figure shows that the relationship between the
maximum deflections becomes increasingly nonlinear when
the voltage applied is increased.

The shown branches in Fig. 3 corresponds to stable
equilibria of the system for a given Vpc € 0.V pu-in) -

Beyond a critical voltage denoted by V,,;;_;, , there are no

equilibria. This critical point, known as the pull-in voltage,
corresponds to 0.261 Volt and a maximum deflection of 14
nm. These values of the pull-in voltage and the maximum
deflection at this voltage provide essential design criterion for

electrically-actuated MEMS and NEMS devices as an upper
limit for their structural stability.

15 T T T

= ROM (1 mode)

== === ROM (4 modes)
® ROM (5 modes)

N
o

Mid-Point Deflection (nm)

Ve (Voly)

Fig. 3 Variation of the static displacement of the NEMS actuator with
the applied DC load for different numbers of modes in the ROM

We propose now to investigate the effect of the van der
Waals force and the electric fringing-fields on the above
mentioned NEMS actuator design parameters. For this, we
demonstrate the difference in the static profile of the NEMS
actuator of Table I with and without considering those effects
respectively in Figs. 4 and 5. It is noted from these two figures
that both effects are affecting the values of voltage and
actuator maximum deflection at the pull-in state.

25

N
o

o (9]

Mid-Point Deflection (nm)

0 005 01 015 02 025 03 0.
Vo (Volt)

Fig. 4 Comparison of the maximum static deflection of the nano-
actuator with the applied DC load while assuming van der Waals
effect (solid black), and while neglecting it (dashed blue)

In fact, the van der Waals force is of attractive nature, it
helped in increasing the nano-actuator static deflection and
hence decreasing its pull-in voltage value, as well as the gap at
this pull-in voltage, Fig. 4. Also, we can clearly see the
influence of the electric fringing-fields on the static profile of
the nano-actuator, Fig. 5. Again this effect is adding more
amplitude to the attractive actuating electrostatic force, and
hence increases the beam deflection. This reduced the pull-in
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voltage while increasing slightly the beam deflection at the
pull-in voltage.

16

[N
N

-
N

N
o

Mid-Point Deflection (nm)

0
0 0.05 0.1 0.15 0.2 0.25 0.3
Vo (Volt)

Fig. 5 Comparison of the maximum static deflection of the nano-
actuator with the applied DC load while assuming electric fringing-
fields effect (solid black), and while neglecting it (dashed blue)

One of the key and basic design parameters for NEMS
actuators is the detachment length. It is by definition the
maximum length of the nanobeam that will not stick to the
actuating substrate, even without the application of any
external voltage [24]. There are multiple ways to get this
unstuck length of the nano-actuator. It can be obtained by
increasing the actuator length until we reach an instability
state for very small values of the applied DC voltage. For our
case study of the NEMS actuator of Table I, we calculated
numerically the detachment length to be equal to 16.79 um,
Fig. 7. This means that if we select any length for the actuator
larger than 16.79 um, the nanobeam will stick to the ground
plane due to the attractive nature of the van der Waals force
without the application of any DC voltage. The variation of
the pull-in voltage versus length of the fixed-fixed end type
NEMS actuator is depicted in Fig. 7. This process has been
repeated for several gap distance values d, Fig. 8. The
variation of the maximum length with the initial gap distance
of the NEMS actuator is presented in Fig. 8. From both
figures, if we know one of the two mentioned parameters, we
can determine the other parameter in the way that the actuator
does not adhere to the substrate due to the van der Waals force
effect.

Mid-Point Deflection (nm)

35 \ \ \ \ \
o =0 | | l
30} s ,,,L,,,,L,,,,L,,'!,,
| | |
---(ZS:8.64 : : : 7
25----- F-———r----tr----r----+-4--4

Mid-Point Deflection (nm)

o

(b)

Fig. 6 Variation of the maximum static deflection of the nano-
actuator with the applied DC load while assuming geometric
nonlinearity (dashed blue), and while neglecting it (solid black), for
an initial gap of (@) d= 50 nm, and (b) d= 60 nm, respectively.

0.35

Pull-in Voltage (Volt)

°
=}
a

Detachment
length

Fig. 7 Variation of the pull-in voltage with the length of the NEMS-
actuator of Table I

L (um)
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Here, we intend to investigate the effect of the geometric
nonlinearity of the NEMS actuator of Table I. The difference
in the results between both models (one with considering the
geometric nonlinearity and one with neglecting this effect) is
illustrated in Figs. 6 and 7 for two different initial gaps, 50 nm
and 60 nm, respectively. It is noted from these two figures that
the geometric nonlinearity shows significant influence on the
NEMS actuator pull-in parameters. As seen from both figures,
the actuator with geometric nonlinearity responds at a
deflection and voltage till pull-in larger compared to the one
without geometric nonlinearity. This is consistent with the
mid-plane stretching effect, due to the geometric nonlinearity,
which acts as a repulsive (stiffening) force and which
increases nonlinearly the stiffness of the actuator. Also, we
can understand from Fig. 6, that by increasing the initial gap,
the influence of the axial stress effect has been amplified.

T T
| |
| |
181 - - - Demehment gt -~ ~-—
| | |
| I
|
|
|

Detachment Length (Lm)

Fig. 8 Variation of calculated detachment length with the initial gap
of the NEMS-actuator of Table I

V.CONCLUSION

In this paper, an investigation into the nonlinear static
behavior of an electrically actuated clamped-clamped micro
and nano-actuator was presented. A  Euler-Bernoulli
continuous beam model was adopted while considering the
van der Waals force and the electric fringing-fields nonlinear
effects. The geometric effect of midplane stretching was also
taken into consideration in the proposed model. The nonlinear
differential equation was discretized using a ROM obtained
through a Galerkin expansion technique, and then solved
numerically assuming the Newton-Raphson method. First, the
numerical results were compared with the FEM and FDM
methods, with the comparison showing excellent agreement.
Then, the pull-in parameters of a nano-actuator were
calculated while looking at the effects of all the nonlinear
components such as: the electric fringing-fields, the midplane
stretching (geometric nonlinearity), and the van der Waals
force. The results showed that the van der Waals force and the
electric fringing-field components decrease the pull-in voltage,
while increasing the nano-actuator deflection at the pull-in
state. The results also demonstrated that the geometric

nonlinearity component increases the pull-in voltage while
decreasing the nanobeam deflection. The detachment length of
the actuator as a basic design parameter was also obtained.
The results of the present paper can be used in the design and
modeling of MEM/NEM actuators.

In the future, we plan to extend the study to solve the full
dynamical behavior of such devices under AC harmonic loads.
We also plan to study the influence of damping on vibrational
amplitudes, while looking at any probability of dynamical
instability regions.
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