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 
Abstract—In this paper geometrically nonlinear static behavior 

of laminated composite hollow super-elliptic beams is investigated 
using generalized differential quadrature method. Super-elliptic beam 
can have both oval and elliptic cross-sections by adjusting parameters 
in super-ellipse formulation (also known as Lamé curves). 
Equilibrium equations of super-elliptic beam are obtained using the 
virtual work principle. Geometric nonlinearity is taken into account 
using von-Kármán nonlinear strain-displacement relations. Spatial 
derivatives in strains are expressed with the generalized differential 
quadrature method. Transverse shear effect is considered through the 
first-order shear deformation theory. Static equilibrium equations are 
solved using Newton-Raphson method. Several composite super-
elliptic beam problems are solved with the proposed method. Effects 
of layer orientations of composite material, boundary conditions, 
ovality and ellipticity on bending behavior are investigated. 
 

Keywords—Generalized differential quadrature, geometric 
nonlinearity, laminated composite, super-elliptic cross-section. 

I. INTRODUCTION 

OMPOSITE beams with various cross-sectional shapes 
such as circular, rectangular or elliptic in solid or hollow 

form are used in many engineering fields like civil 
engineering, aeronautics, military, automotive and marine 
industry as reinforcement elements or load carrying structures. 
Hence, understanding the mechanical behavior of these 
structures is very essential to enable safe and economical 
designs. Following studies from literature are related to the 
beams with various cross-sectional shapes such as circular, 
rectangular or elliptic in solid or hollow form. Guo et al. [1] 
conducted an experimental study on the bending behavior of 
thin-walled circular hollow section tube structures. 
Karagiozova et al. [2] ,[3] studied on the dynamic response of 
circular and square metallic hollow cross-section beams 
subjected to an impulsive loading in order to investigate the 
deformation and energy absorption characteristics of such 
structures. Zheng et al. [4] investigated the bending capacity 
of cold-formed stainless steel beams with rectangular and 
circular cross-section both experimentally and numerically. Li 
and Yang [5] studied on thermal post-buckling behavior of 
anisotropic laminated beams with tubular cross-sections 
resting on elastic foundation under a variety of temperature 
distributions through the thickness. Asadi and Aghdam [6] 
performed large amplitude free vibration and post-buckling 
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analysis of laminated composite beam with non-uniform 
cross-section resting on a nonlinear elastic foundation using 
Euler–Bernoulli beam theory and GDQ method. Zhao et al. [7] 
used Chebyshev polynomials theory to investigate the free 
vibration behavior of functionally graded Euler–Bernoulli and 
Timoshenko beams with non-uniform cross-sections. Ghafari 
and Rezaeepazhand [8] employed dimensional reduction 
method in order to perform an isogeometric analysis on 
composite beams with arbitrary cross-section. Jiao et al. [9] 
conducted both theoretical and experimental studies on the 
buckling and post-buckling behavior of bilaterally constrained 
beams with non-uniform cross-sections. Law and Gardner [10] 
investigated the lateral instability of beams with elliptical 
hollow cross-section. Murin et al. [11] conducted 
experimental, numerical and semi-analytical studies on 
torsional warping free vibration behavior of rectangular 
hollow beams. 

As it can be seen from the literature, there are studies about 
beams with various cross-sections. In this study circular, 
elliptical or oval cross-sections can be expressed through 
super-ellipse formulation. Thus, in this study, geometrically 
nonlinear static behavior of laminated composite hollow 
beams with super-elliptic cross sections is investigated using 
generalized differential quadrature (GDQ) method. Static 
equilibrium equations are obtained through virtual work 
principle and von-Kármán nonlinear strain-displacement 
relations are utilized to represent the geometric nonlinearity. 
Transverse shear effect is taken into account according to the 
first-order shear deformation theory. Newton-Raphson method 
is used to solve equilibrium equations. Several laminated 
composite super-elliptic beam problems are solved using GDQ 
method to investigate bending behavior under different 
boundary conditions considering different layer orientation 
angle, ovality and ellipticity values. 

II. STATEMENT OF THE PROBLEM 

Cross-section of a super-elliptical beam is formed with 
Lamé curves defined by  
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where a and b are the major and minor radius at a cross-
section. a/b ratio defines the ellipticity of the cross-section. n 
is a positive number determining the ovality of the cross-
section. The curve is called as ellipse for n = 2, hypo-ellipse 
for n < 2 and hyper-ellipse for n > 2. The ovality of the cross-
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section increases with increasing value of n as it is shown in 
Fig. 1. Dimensional properties of super-elliptic beam are 
shown in Fig. 2 where t is the wall thickness, h and L are the 
height and length of the beam, respectively. 

 

 

Fig. 1 Cross section of a beam with different Lamé curves 
 

In a moderately thick beam, based on first-order shear 
deformation theory (FSDT) displacement field can be written 
in terms of mid-plane displacements and rotation as 
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where u0, w0 denote longitudinal and transverse displacements 
at reference mid-plane (x-y) and θx represents the rotation 
about y axis. 

 

 

Fig. 2 Hollow cross section parameters and fiber orientation for 
laminated composite 

 
Nonlinear strain components for moderately thick beam can 

be expressed as [12] 
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The constitutive equation for a laminated composite beam 

can be expressed in terms of in-plane force and moment 
resultants as 
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Laminate constitutive equation for transverse shear in terms 

of shear force resultant can be stated as 
 

ssAQ   (6) 
 
A, B, D, and As are laminate stiffness coefficients representing 
in-plane, bending-stretching coupling, bending and transverse 
shear stiffnesses respectively. They are obtained as: 
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where ks = 1/2 is the shear correction factor for hollow circular 

cross-sections [13]. )(k
xE  is the equivalent elastic modulus for 

composite layer and it is given as [14] 
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kQ  is the shear modulus of composite layer calculation of 

which can be found in composite mechanics books. 
 Static equilibrium equations of a beam can be derived 

through the virtual work principle. In this context, virtual work 
principle can be stated as the virtual work of internal forces is 
equal to the virtual work of external forces. 

For a beam in the absence of damping it can be written as 
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where q(x) is the distributed load on the beam and Fi is the 
concentrated load on the corresponding node. In (9), the terms 
on the left-hand side denote the virtual work of internal forces 
due to stresses. First term on the right hand side denotes the 
virtual work of external forces due to distributed load and 
second term indicates the virtual work of concentrated forces. 
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Equation (9) can be written in terms of force and moment 
resultants as  
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Using virtual work equation (10), equation of motion can be 

obtained in matrix form as: 
 

FP   (11) 
 
where P and F denote internal force and external force 
vectors, respectively. Nonlinear static equation of equilibrium 
in (11) can be solved by using iterative Newton Raphson 
method. In the implicit solution procedure, equation of 
equilibrium is written in residual form where displacements 
are to be calculated as: 
 

FPR   (12) 
 

Residual equation is linearized leading to the incremental 
equilibrium equation as  
 

RUK   (13) 
 

Solution of (13) iteratively leads to displacement 
increments. Displacement increments are added to the 
previous values to yield final displacement values. 

K matrix in (13) is often referred to as tangent stiffness 
matrix and for thick straight beam it is given as 
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where Bb, Bs, Np, Nd are given as  
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Tangent stiffness matrix is calculated using numerical 

integration. Nd matrix in the tangent stiffness matrix for the i-

th integration point (
i
dN ) is given as 
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where Cij are weighting coefficients used in GDQ method. 

III. NUMERICAL RESULTS 

GDQ method is used in the solution of super-elliptic 
composite beam equilibrium equations in this study. In order 
to employ the GDQ method, a computer program was 
developed. GDQ code was validated with analysis results from 
the literature.  

For validation, a circular hollow isotropic beam made of 
stainless steel (SUS304) from the literature is considered [15]. 
Material properties are: E=201.04 GPa, G=75.8 GPa and ν= 
0.3262. Dimensional properties are: t=0.005 m, a=b=0.01 m, 
h=0.02 m, L=1 m. Both ends of the beam are clamped. 
Comparisons of load-displacement curves under uniformly 
distributed load with literature and GDQ method are shown in 
Fig. 3. Good agreement is obtained with the results of the 
given reference. 

 

 

Fig. 3 Comparisons of load-displacement curves for SUS304 beam 
subjected to uniformly distributed load (q). (a/b=1, a/t=2, L/h=50) 

 
In this study, several super-elliptic composite beam 

problems are solved with the GDQ method. In the solved 
examples, different ovality and ellipticity values, layer 
orientations and boundary conditions are used. 

Composite material properties used are: E11=525.38 GPa, 
E22= E33=21.015 GPa, G12= G13=G23=10.508 GPa, ρ=775.523 
kg/m3 and ν12=0.25. Two different composite layer angle 
orientations are used in the analyses: [0o/90o/0o/90o/0o] and 
[0o

5]. Wall thickness of the hollow cross-section (t) is taken as 
t=0.0025 m. Major radius (a) is taken as a=0.025 m. The 
length of the beam is L=1 m. a/t=10 and h/b=2 are utilized in 
analyses. In all cases, concentrated transverse force is applied 
(F=1 kN) on the free end of the beam for cantilever beam (CF) 
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and in the middle of the beam for both clamped (CC) and both 
simply supported (SS) boundary conditions as shown in Fig. 4. 
Analysis results are obtained using 11 grids with GDQ 
method. 

 

 

Fig. 4 Loading conditions for (a) cantilever beam (b) beam with CC 
and SS boundary condition 

 
Transverse displacement values of laminated composite 

super-elliptic beam with different ovality values for 
[0o/90o/0o/90o/0o] composite layer orientation under CF, CC 
and SS boundary condition are given in Figs. 5-7, respectively 
(a/b=2). Transverse displacement values of laminated 
composite super-elliptic beam with different ovality values for 
[0o

5] composite layer orientation under CF, CC and SS 
boundary condition are given in Figs. 8-10, respectively 
(a/b=2). As seen in Figs. 5-10, transverse displacement values 
decrease with increasing ovality values under CF, CC and SS 
boundary conditions for [0o/90o/0o/90o/0o] and [0o

5] composite 
layer orientations. CF boundary condition has led higher 
displacement values than those for CC and SS boundary 
conditions. Bending stiffness of [0o

5] composite layer 
orientation is higher than [0o/90o/0o/90o/0o] layer orientation 
under CF, CC and SS boundary conditions. 

 

 

Fig. 5 Transverse displacement values of super-elliptic beam with 
different ovality values for CF boundary condition (a/b=2, 

[0o/90o/0o/90o/0o]) 
 

 

Fig. 6 Transverse displacement values of super-elliptic beam with 
different ovality values for CC boundary condition (a/b=2, 

[0o/90o/0o/90o/0o]) 
 

 

Fig. 7 Transverse displacement values of super-elliptic beam with 
different ovality values for SS boundary condition (a/b=2, 

[0o/90o/0o/90o/0o]) 
 

Maximum transverse displacement values of laminated 
composite super-elliptic beam with different ellipticity (a/b) 
and ovality values under CF, CC and SS boundary condition 
for [0o/90o/0o/90o/0o] layer orientation are shown in Figs. 11-
13. As seen in Figs. 11-13, maximum transverse displacement 
values increase with increasing ellipticity values. However, 
increase in ovality decreases the displacement values for all 
ellipticity values (0.5 ≤ a/b ≤ 2.5) and boundary conditions 
(CF, CC and SS). 
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Fig. 8 Transverse displacement values of super-elliptic beam with 
different ovality values for CF boundary condition (a/b=2, [0o

5]) 
 

 

Fig. 9 Transverse displacement values of super-elliptic beam with 
different ovality values for CC boundary condition (a/b=2, [0o

5]) 
 

 

Fig. 10 Transverse displacement values of super-elliptic beam with 
different ovality values for SS boundary condition (a/b=2, [0o

5]) 

 

Fig. 11 Maximum transverse displacement values of super-elliptic 
beam with different ellipticity (a/b) and ovality values for CF 
boundary condition (For [0o/90o/0o/90o/0o] layer orientation) 

 

 

Fig. 12 Maximum transverse displacement values of super-elliptic 
beam with different ellipticity (a/b) and ovality values for CC 
boundary condition (For [0o/90o/0o/90o/0o] layer orientation) 

 

 

Fig. 13 Maximum transverse displacement values of super-elliptic 
beam with different ellipticity (a/b) and ovality values for SS 
boundary condition (For [0o/90o/0o/90o/0o] layer orientation) 
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IV. CONCLUSIONS 

In this study, geometrically nonlinear static behavior of 
laminated composite hollow super-elliptic beams is 
investigated using GDQ method. Super-ellipse formulation is 
used to represent the oval, elliptic and circular cross-sections. 
Virtual work principle is used to obtain equilibrium equations 
of super-elliptic beam and von-Kármán nonlinear strain-
displacement relations are utilized. FSDT is considered to 
represent transverse shear effect. GDQ method is used to 
calculate the spatial derivatives in strains and Newton-
Raphson method is utilized to solve static equilibrium 
equations. 

Regarding the examples solved in this study, outlines of the 
study can be summarized as below: 
 Transverse displacement values decrease with increasing 

ovality values under CF, CC and SS boundary conditions 
for [0o/90o/0o/90o/0o] and [0o

5] composite layer 
orientations. 

 Bending stiffness of [0o
5] composite layer orientation is 

higher than [0o/90o/0o/90o/0o] layer orientation under CF, 
CC and SS boundary conditions. 

 CF boundary condition has led higher displacement 
values than those for CC and SS boundary conditions. 

 Maximum transverse displacement values increase with 
increasing ellipticity values for CF, CC and SS boundary 
conditions. 

 GDQ method is an efficient and effective method to 
analyze such systems like in this study. 
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