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Nonlinear Stability of Convection in a Thermally
Modulated Anisotropic Porous Medium

M. Meenasaranya, S. Saravanan

Abstract—Conditions corresponding to the unconditional stability
of convection in a mechanically anisotropic fluid saturated porous
medium of infinite horizontal extent are determined. The medium
is heated from below and its bounding surfaces are subjected to
temperature modulation which consists of a steady part and a
time periodic oscillating part. The Brinkman model is employed
in the momentum equation with the Bousinessq approximation.
The stability region is found for arbitrary values of modulational
frequency and amplitude using the energy method. Higher order
numerical computations are carried out to find critical boundaries
and subcritical instability regions more accurately.
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I. INTRODUCTION

THE study of convective flow in modulated fluid layers or

fluid saturated porous layers has received considerable

attention of researchers because of its occurrence in many

physical applications. For example in the solidification

process, high quality crystals are produced in the presence of

microgravity conditions. It is known that such crystals can

be produced on the ground itself by imposing appropriate

modulation to the boundary temperature [1]. The problem of

determining thermal modulation effect on the Benard problem

was first studied by Venezian [2]. A similar system was

considered by Rosenblat and Herbert[3] with a thermally

modulated lower wall and an isothermal upper wall to

obtain asymptotic solutions for arbitrary values of modulation

amplitude. This work was further analysed by Rosenblat and

Tanaka [4] considering rigid walls and by Yih and Li [5]

considering thermal modulation at both walls.

Homsy [6] made a nonlinear stability analysis of a fluid

layer heated from below under gravity and surface temperature

modulations. An experimental cum analytical study was

done by Finucane and Kelly [7] to determine the onset

condition for convection in a thermally modulated fluid layer.

Later Caltagirone [8] determined the instability region for a

thermally modulated densely packed porous medium using the

Galerkin method. Chhoun et al. [9] carried out an experimental

investigation of the same problem. The linear stability analysis

of a sparsely packed porous medium with surface temperature

modulation was further extended by Rudraiah et al. [10]

for a viscoelastic fluid, by Malashetty et al. [11] for stress

free boundaries and by Bhaduria [12] for rigid boundaries.

Recently Singh et al. [13] made an energy analysis for a
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rotating fluid layer by taking into account sinusoidal surface

temperature modulation and Coriolis force.
All practical porous media exhibit a kind of anisotropy

in them. Anisotropy, in general, refers to a property which

depends on directions. Many stability analyses have been

carried out for a horizontal anisotropic porous media. Castinel

and Combarnous [14] were the first to determine the onset

of convection in a horizontal fluid saturated porous layer

with anisotropic permeability. Their analysis was extended by

Epherre [15] for anisotropic thermal diffusivity. These works

and similar later ones were reviewed by Storesletten [16].

Malashetty and Basavaraja [17] made a linear stability analysis

of double diffusive convection in a horizontal anisotropic

porous medium subjected to thermal modulation effect.
Linear and nonlinear stabilities of a horizontal anisotropic

fluid saturated porous medium with permeability depending on

the vertical direction were studied by Capone et al.([18], [19]).

They considered the effects of different factors such as internal

heat generation, double diffusion and mass throughflow.

Saravanan and Sivakumar [20] determined the instability

region corresponding to a gravity modulated fluid saturated

anisotropic porous medium heated from below or from

above. A weakly nonlinear stability analysis was made by

Siddheshwar et al. [21] to determine the effect of variable

viscosity in a gravity modulated, horizontal and anisotropic

porous medium. In addition, Bhadauria and Kiran [22] found

weakly nonlinear stability results for a thermally modulated,

horizontal and anisotropic porous medium saturated with a

viscoelastic fluid.
It is known from the literature that nonlinear stability results

are available for thermally modulated fluid layers ([6], [13])

whereas only linear and weakly nonlinear stability analyses

have been carried out for thermally modulated porous media

with anisotropy ([17], [22]). Hence an attempt is made here

to determine the effect of surface temperature modulation on

convection in an anisotropic fluid saturated porous medium

using nonlinear analysis. In this study we consider a more

general Brinkman model.

II. MATHEMATICAL FORMULATION

We consider a three dimensional, infinite and horizontal

porous medium of height d, placed between two walls z = 0
and z = d. It is saturated by a Newtonian, incompressible and

viscous fluid with x, y coordinates in the horizontal directions.

The gravity is acting downwards. The medium is heated from

below and its wall temperatures are subjected to time periodic

modulations. The density of the fluid is assumed to change

with temperature, following Boussinesq approximation.
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The dimensional governing equations for the considered

system take the form

∂�q

∂t
+ (�q · ∇)�q = −1

ρ
∇p+ ν∇2�q − ν

¯̄κ
�q + αTg0�k (1)

∇ · �q = 0 (2)

∂T

∂t
+ (�q · ∇)T = χ∇2T (3)

with the boundary conditions

w =
∂2w

∂z2
= 0 at z = 0, d (4)

T = Tr +ΔT (1 + a cos(Ωt))/2 at z = 0 (5)

T = Tr −ΔT (1− a cos(Ωt+ φ))/2 at z = d (6)

where �q = (u, v, w), t, ρ, p, ν, α, g0�k, χ, T , Tr,

ΔT , a, Ω and φ represent the velocity, time, density,

pressure, kinematic velocity, coefficient of thermal expansion,

reference gravity, thermal diffusivity, temperature, reference

temperature, temperature difference between the walls,

modulational amplitude, modulational frequency and phase

angle respectively. The permeability of the medium is taken

in the form

¯̄κ =

⎡
⎣ kx 0 0

0 kx 0
0 0 kz

⎤
⎦

and this assumption makes the system an anisotropic one.

We try to find solutions for the equations (1)-(3) of the form

�q = �qb = (0, 0, 0), T = Tb(z, t) and p = pb(z, t). This leads

to

Tb(z, t) = Tr +
ΔT

2d
(d− 2z) +

aRe[e−iΩt{a(β)eβz/d + a(−β)e−βz/d}]
with a(β) = ΔT (e−iφ − e−β)/(2(eβ − e−β)) and

β = (1 − i)
√

Ωd2/(2χ). The hydrostatic pressure

depends on the buoyance force. Applying the perturbation

(�q
′
, θ, p

′
) to velocity, temperature and pressure in the

above basic state solution and using the reference values

d, χ/d, d2/χ, ρχν/d2,ΔT and χ/d2 for length, velocity,

time, pressure, temperature and modulation frequency result

in the following equations for perturbations (primes are

removed):

1

Pr

[
∂�q

∂t
+ (�q · ∇)�q

]
= −∇p+∇2�q − 1

Da
�qa +Raθ�k (7)

∇ · �q = 0 (8)

∂θ

∂t
= ∇2θ − w

∂Tb
∂z

− (�q · ∇)θ (9)

where

∂Tb/∂z = −1 + af(z, t)

with f(z, t) = Re[e−iωt{A(β)eβz + A(−β)e−βz}], A(β) =
β(e−iφ − e−β)/(2(eβ − e−β)), β = (1 − i)

√
ω/2 and ω

denoting the non-dimensional modulational frequency. Here

Pr = ν/χ represents the Prandtl number, Da = kz/d
2

the Darcy number, kr = kx/kz the anisotropy parameter,

�qa = (q1/kr, q2/kr, q3) the anisotropy modified velocity and

Ra = αgΔTd3/(νχ) the Rayleigh number.

III. ENERGY ANALYSIS

In order to analyse stability of the basic state identified

earlier, we define energy evolution function in the form

E =

〈
�q 2
〉

2Pr
+

〈
Φ2
〉

2

where Φ =
√
Raλ θ. Here λ represents the coupling parameter

and 〈·〉 denotes the L2-inner product over the volume V
of porous medium. Employing (7)-(9) in the above function

results in

dE

dt
=

√
Ra I(t)−D (10)

with

I(t) =

〈(
1√
λ
−
√
λ
∂Tb
∂z

)
wΦ

〉
,

D = 〈∇�q : ∇�q 〉+ 1

Da
〈�q · �qa〉+

〈|∇Φ|2〉 .
The equation (10) together with the isoperimetric inequality

D ≥ ζ2E, where ζ is a constant, imply

dE

dt
≤ ζ2E

(
−1 +

√
Ra

ρ

)

≤ ζ2E

(
−1 +

√
Ra

RaN

)

Here
1

ρ
=

max

H

I(t)

D
, H the space of admissible functions and

RaN =
min

t ∈ [0, 2π/ω]
ρ. We notice that the minimization is

done over a period.

If
√
Ra ≤ RaN we notice exponential decay of E for

all disturbances irrespective of their magnitudes. Thus we

end up with the following Euler-Lagrange equations for the

variational problem under consideration:

∇2�q − 1

Da
�qa +

ρ

2
F (z, t)Φ�k = ∇ψ (11)

∇2Φ+
ρ

2
F (z, t)w = 0 (12)

where F (z, t) = (1 + λ − λaf(z, t))/
√
λ and ψ denotes

a multiplier. After curling the equation (11) twice and

introducing the normal mode expansions

w(x, y, z, t) = w(z, t)ei(αxx+αyy)

Φ(x, y, z, t) = Φ(z, t)ei(αxx+αyy),

one can arrive at

(D2 − α2)2w − 1

Da

(
1

kr
D2 − α2

)
w =

ρ

2
α2F (z, t)Φ (13)

(D2 − α2)Φ = −ρ
2
F (z, t)w (14)

where D ≡ ∂/∂z and α2 = α2
x + α2

y is the wave number.

These equations need to be solved with relevant conditions.

Stress free conditions are considered at the walls.
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These equations (13) & (14) are solved using the standard

Galerkin method which is a simple and powerful method. We

choose approximations to the perturbed quantities in the form

w(z, t) =

n∑
m=1

Am(t)sin(mπz)

Φ(z, t) =
n∑

m=1

Bm(t)sin(mπz)

where Am and Bm are coefficients to be found. We substitute

these in (13) & (14) and multiply them by each trial function

and then integrate them over V . This results in an eigenvalue

problem with ρ as the eigenvalue, depending on the parameters

t, α and λ. By fixing numerical values to these parameters, we

obtain an eigenvalue problem of order 2n. The eigenvalues

are all found to be real and the eigenvalue nearest to zero is

assigned for ρ. Consequently, the nonlinear stability limit is

defined via the following optimization

RaN =
min

t

min

α

max

λ
ρ(λ, t, α). (15)

IV. RESULTS AND DISCUSSION

An anisotropic fluid saturated porous medium heated from

below with thermally modulated walls is examined using

nonlinear analysis. Figs. 2-5 provide the variation of critical

Darcy-Rayleigh number, denoted by RN,cr(= Ra2N ∗ Da),
against thermal modulation frequency ω for different values

of kr and Da. The region lying below the continuous curve

corresponds to the global stability region and represents

conduction state for respective parameters. The critical wave

number(αN,cr), defined as the value of α at which RaN is

attained, is given in Table I for corresponding parameters.

We assign kr = 0.1, 10 [20] and Da = 10−4 and 10−1 to

represent the Darcy and Brinkman models respectively [23].

It was sufficient to vary the coupling parameter and time

in the intervals (0,5) and (0,10) respectively to determine the

critical values. In order to maintain the error percentage of the

results between those of n and n+1 trial functions well within

1%, we fixed n = 10 uniformly throughout the computations.

TABLE I: UNMODULATED RESULTS WITH a = 0

Da = 1

kr RL,cr αL,cr RN,cr αN,cr

0.1 939.61 2.58 939.61 2.58
0.5 730.30 2.30 730.30 2.30

kr = 0.1

Da RL,cr αL,cr RN,cr αN,cr

0.001 173.15 5.50 173.15 5.50
1.0 939.61 2.58 939.61 2.58
10.0 6881.98 2.29 6881.98 2.29

Fig. 1 (a) RN,cr & RL,cr against ω with a = 0.1,

Da = 1, kr = 0.1 for symmetric modulation

Fig. 1 (b) RN,cr & RL,cr against ω with a = 0.1,

Da = 1, kr = 0.1 for asymmetric modulation

The entries in Table I for the unmodulated system and the

curves in Fig. 1 for the modulated system clearly show that the

nonlinear boundaries lie below the linear ones as anticipated.

The linear results, RL,cr and αL,cr taken for comparison from

the literature, were obtained using the perturbation method

[17]. The region between RL,cr and RN,cr represent possible

subcritical instability for the system under consideration and

a similar result was obtained by Homsy [6] for a fluid layer.

Fig. 2 RN,cr against ω with Da = 0.0001, kr = 0.1
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Fig. 3 RN,cr against ω with Da = 0.0001, kr = 10

Fig. 4 RN,cr against ω with Da = 0.1, kr = 0.1

Fig. 5 RN,cr against ω with Da = 0.1, kr = 10

When φ = 0, an increase in the modulational frequency

destabilizes the system. The maximum destabilization is found

to occur at ω = 30. The system is stabilized against frequency

beyond ω = 30. On the other hand when φ = π, the response

is unique. An increase in the frequency causes a stabilizing

effect. The fluid particles in the system do not respond to

external modulation for sufficiently high frequencies. Thus

RN,cr reaches the unmodulated result as ω → ∞. Moreover

we find that the onset of convection is advanced as the

modulational amplitude is increased. Also an increase in the

anisotropy parameter is found to destabilize the system. This

behaviour is in consistent with that of [17].

One may also notice from the critical boundaries that the

amount of heat required for the onset of buoyancy driven

convection is higher in the case of the Brinkman model. This

may be due to the existence of boundary layer near the walls

with thickness proportional to the square root of Darcy value.

The fluid particles in the boundary layer effectively withstand

increased resistance which may otherwise cause deformation.

However the stability curves are qualitatively similar for both

Darcy and Brinkman models. In general the unmodulated

results are attained little faster for the symmetric modulation

compared to the asymmetric one.

V. CONCLUSION

Nonlinear stability limits corresponding to convection

in a thermally modulated and anisotropic porous medium

are obtained using the energy method. The modulational

frequency produces two different effects in the case of

symmetric modulation whereas it always has a stabilizing

effect in the case of asymmetric modulation. However

an increase in the modulational amplitude and anisotropy

parameter always produce destabilizing effect. Thus the

stability of the system can be increased or decreased by

choosing appropriate amplitude and frequency, depending on

the extent of anisotropy.
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