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Abstract—The earliest theories of sloshing waves and solitary 

waves based on potential theory idealisations and irrotational flow 
have been extended to be applicable to more realistic domains. To 
this end, the computational fluid dynamics (CFD) methods are widely 
used. Three-dimensional CFD methods such as Navier-Stokes solvers 
with volume of fluid treatment of the free surface and Navier-Stokes 
solvers with mappings of the free surface inherently impose high 
computational expense; therefore, considerable effort has gone into 
developing depth-averaged approaches. Examples of such approaches 
include Green–Naghdi (GN) equations. In Cartesian system, GN 
velocity profile depends on horizontal directions, x-direction and y-
direction. The effect of vertical direction (z-direction) is also taken 
into consideration by applying weighting function in approximation. 
GN theory considers the effect of vertical acceleration and the 
consequent non-hydrostatic pressure. Moreover, in GN theory, the 
flow is rotational. The present study illustrates the application of GN 
equations to propagation of sloshing waves and solitary waves. For 
this purpose, GN equations solver is verified for the benchmark tests 
of Gaussian hump sloshing and solitary wave propagation in shallow 
basins. Analysis of the free surface sloshing of even harmonic 
components of an initial Gaussian hump demonstrates that the GN 
model gives predictions in satisfactory agreement with the linear 
analytical solutions. Discrepancies between the GN predictions and 
the linear analytical solutions arise from the effect of wave 
nonlinearities arising from the wave amplitude itself and wave-wave 
interactions. Numerically predicted solitary wave propagation 
indicates that the GN model produces simulations in good agreement 
with the analytical solution of the linearised wave theory. 
Comparison between the GN model numerical prediction and the 
result from perturbation analysis confirms that nonlinear interaction 
between solitary wave and a solid wall is satisfactorilly modelled. 
Moreover, solitary wave propagation at an angle to the x-axis and the 
interaction of solitary waves with each other are conducted to 
validate the developed model. 
 

Keywords—Even harmonic components of sloshing waves, 
Green–Naghdi equations, nonlinearity, solitary waves.  

I. INTRODUCTION 

REE surface waves can be categorised as progressive, 
sloshing, and solitary waves of displacement depending on 

whether they are excited as free or forced surface responses in 
a container, or shear driven waves in an open domain, or 
displaced waves. The movement of liquid with a free surface 
in a container is known as slosh. For instance, slosh occurs 
when water in a closed tank is set in motion by a free surface 
displacement, or when liquid natural gas in a container is 
vibrated by an external driving force such as earthquake or 
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movement induced by transport. According to [1], sloshing 
theories originate from fluid field equations for behaviour of 
free surface waves whereby linearised mass and momentum 
equations are applied as governing equations. The linearised 
solution of sloshing behaviour is not exactly realistic since not 
only does the position of free surface vary, but also the 
combined free surface boundary condition is nonlinear, 
involving mixed kinematic and dynamic boundary conditions. 
The nonlinear behaviour of sloshing is particularly affected by 
the initial wave amplitude (which is assumed to be zero in 
linear models). Slosh motions can be categorised as simple 
planar, rotational, symmetric, asymmetric, and chaotic [1]. 

Solitary waves propagate along the channel without any 
change in their form, elevation and velocity. In 1834 John 
Scott Russell was the first person to discover this type of wave 
when he observed a solitary-type wave released by a boat as it 
manoeuvred in the Union Canal at Hermiston. Scott Russell 
reported that: the wave speed is dependent on the ratios of 
wave amplitude and wave width with respect to the water 
depth; and interaction of solitary waves with each other does 
not change their original features [2]. Waves in the open ocean 
and in liquid containers and basins are often approximated by 
infinite Fourier series of sine and cosine waves which are 
dispersive and may travel in different directions depending on 
the mode of generation [3]. This linear representation of ocean 
sea states ignores inherently nonlinear pre-breaking wave 
behaviour (peaked crests and broad troughs) and nonlinear 
wave-wave interactions. To extend to more realistic domains, 
the three-dimensional (3D) computational methods have 
become widely used. The 3D computational methods undergo 
inherently high computational expense; therefore, 
considerable effort has gone into depth-averaged approaches, 
they being cheaper to compute and yet capturing much of the 
physics. Green and Naghdi [4] proposed a theory of fluid 
sheets known as GN theory to model the two-dimensional 
(2D) continuum of unsteady inviscid 3D flows. According to 
[5], the GN approach assumes a particular flow kinematic 
structure in the vertical direction for shallow and deep water 
problems. In GN theory, the fluid velocity profile is a finite 
sum of coefficients depending on space and time multiplied by 
a weighting function. GN theory is not based on priori 
assumptions on any scaling parameter or perturbation 
expansion. GN fluid sheet theory reduces the dimensions from 
three to two, yielding equations that can be solved efficiently 
so that no scale is introduced and no term is deleted [5]. 
Reference [6] derived the kth level theory of GN equations. In 
the present study, GN equations are applied to simulate the 
nonlinear behaviour of sloshing waves. 
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 An analytic solitary wave solution of the level I GN 
equations is presented by [7] for solitary wave generation 
through moving disturbance in shallow water. Reference [8] 
examined the convergence of the solitary wave and periodic 
wave solutions of the first three levels of the GN equations. 
Reference [8] concluded that the best convergence was related 
to higher levels of theory for critical speed. Reference [9] 
developed an irrotational Green-Naghdi (IGN) model of large-
amplitude nonlinear wave propagation and irregular wave-
wave interactions in deep water. Reference [10] proposed a 
hybrid numerical method employing a Godunov-type scheme 
to solve the GN model for dispersive shallow water waves in 
transcritical flows, including dam-breaks. Reference [11] 
examined the applicability of level I GN equations to solitary 
wave propagation over a gradually changing bathymetry. In 
these studies, good agreement was obtained between the 
laboratory data and level I GN predictions. Reference [12] 
studied nonlinear solitary waves in constant and variable water 
depths by applying original level I GN equations and different 
levels of IGN equations. Reference [12] verified their models 
through various tests such as: (1) Solitary wave propagating 
from deep water to shallow water (and vice versa), with a 
linear transition between the two depths. (2) Solitary wave 
propagating over a submerged curved bump. (3) Reflection of 
a solitary wave from a vertical wall. (4) Interaction (collision 
and overtaking) of two solitary waves over a flat seafloor. (5) 
Waves produced by an initial mound of water (dam break 
problem). In all the solitary wave cases, it was concluded that 
with increase of nonlinearity, level I GN equations compared 
to higher levels of IGN equations underestimates higher 
harmonics. Reference [13] used Newton–Raphson method to 
develop steady-state solitary wave solution of high-level GN 
equations, in which different solitary wave features such as 
wave speed, wave profile and velocity field were examined.  

In the present study, a numerical model is developed to 
simulate nonlinear even harmonic oscillations of free surface 
sloshing of an initial Gaussian hump in basin. For this 
purpose, 2D level I GN equations are applied as governing 
equations of fluid field to produce nonlinear second-order and 
higher-order wave interactions. Moreover, the solitary wave 
propagation in wall-banded basin is examined by applying 
level I GN numerical solver. In another test, level I GN 
numerical solver is used to simulate the nonlinear interaction 
of two solitary waves with solid wall and their interaction with 
each other. Sections II and III present the derivation of 
governing GN equations. Sections IV and V outline the 
numerical implementation. Sections VI and VII, respectively, 
demonstrate the results for free surface sloshing of even 
harmonic components of an initial Gaussian hump and solitary 
wave propagation in basins. Section VIII presents the result 
for interaction of two solitary waves in wall-bounded basin. 
Section IX is the summary of the main findings. 

II. CONTINUITY EQUATION OF LEVEL I GN EQUATIONS 

The classical mass conservation equation is applied to drive 
GN continuity equation: 

 

u v w

x y z

  
  

  
0        (1) 

 
in which u, v, w are the velocity components in the x, y, z 
directions. In order to derive the GN continuity equation, the 
velocity vector (V) is written as follows:  
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Here, ( , , )n n n nW u v w


 is a vector of velocity component 

approximations, n  is assumed shape functions which depends 

on z-direction, and e is the level of approximation of GN 
theory. GN velocity parameters for level I are: 
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More details on above assumptions are provided by [6]. By 

applying (3) in (1) the 2D level I GN continuity equation is 
derived: 
 

0 0u h v hh

t x y

 
  

  
0       (5) 

 
Here, h is the total water elevation, (u0, v0) are the horizontal 
velocity components, and t is the time. In the present 
derivation of GN equations, the total water elevation (h) is 

0h h   . Here, h0 is the still water depth and is the free 

surface elevation above still water level. 

III. MOMENTUM EQUATIONS OF LEVEL I GN EQUATIONS 

The classical x-momentum conservation equation is used to 
drive GN x-momentum equation: 

 

u uu uv uw P

t x y z x
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    
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     (6) 

 
Here,   is water density and P is pressure. Applying depth 

integration to (6), then using the chain rule for fourth term, 
and applying Leibnitz Rule for right hand side term yields: 
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 0

z

n

n

P dz
P

x







 and P̂  is pressure at the free surface 

(here ˆ 0P  ). By applying (2) in (7), the constrained x-
direction momentum equation of GN equations is: 
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More details are provided by [2], [14].  
The constrained z-momentum equation of GN equations is: 
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in which 
0

z

n nP P dz    and g is the gravitational 

acceleration.  
By simplifying (8), the 2D level I x-momentum GN 

equation for flat bathymetry is: 
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Derivation of the 2D level I y-momentum GN equation is 

presented by [2].  

IV. NUMERICAL IMPLEMENTATION 

According to [15], GN equations (5) and (10) are 
discretised numerically through second-order central 
differences as numerical scheme. Continuity equation of GN 
equations (5) is simply discretised using explicit finite 
differences. However, GN momentum equations include 
cross-derivatives (i.e., space derivative and time derivative) 
terms which cannot be discretised by explicit finite 

differences. Therefore, implicit tridiagonal matrix inversion is 
applied to solve the GN momentum equations. The explicitly 
discretised GN continuity equation (5) is:    
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Here, i refers to x-direction, j is y-direction and t is time. 

The cross-derivatives terms of the GN momentum equation 
(10) are separated from the rest of space derivative terms   
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Equation (12) is discretised by applying second-order finite 

differences 
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Equation (13) can be written in form of matrix coefficients 
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Here, t
ija  is the subdiagonal of the matrix solver, t

ijb is the 

main diagonal of the matrix solver, and t
ijc is the superdiagonal 

of the matrix solver. Other space derivative terms of (10) are 
also discretised: 
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Equations (14) and (15) together formed the developed 
numerical solver for GN momentum equation (10). Thomas 

algorithm [16] is applied to obtain  0
t

iju . 

y-momentum equation is also discretised and the details are 
presented by [2]. To update the values of water elevation (h) 
and the velocity profile (u,v), the Runge-Kutta fourth-order 
(RK4) time-stepping scheme is applied to the GN numerical 
solver. 

V. THE NUMERICAL CONVERGENCE EXAMINATIONS   

The following benchmark tests are designed: free surface 
sloshing of even harmonic components of an initial Gaussian 
hump in a basin and solitary wave propagation in a wall-
bounded basin. 

To determine the length and width of grids, convergence 
examinations were carried out for free surface sloshing of 
even harmonic components of an initial Gaussian hump. To 
this end, the free surface elevation patterns in the basin of 7.5 
m length and 7.5 m width were obtained on increasingly grid 
size with ∆x = ∆y = 150 mm (coarse grids), ∆x = ∆y = 37.5 
mm (medium grids), and ∆x = ∆y = 7.5 mm (fine grids). The 
medium grid size ∆x =∆y = 37.5 mm was sufficient to 
convergence. Therefore, ∆x = ∆y = 37.5 mm was chosen for 
numerical simulations of sloshing of even harmonic 
components of an initial Gaussian hump. Also, small time-step 
(∆t = 0.05 s) was used for numerical predictions of sloshing of 
even harmonic components of an initial Gaussian hump.  

To simulate the solitary wave, 3D visualisations of free 
surface elevation patterns in a basin of 25 m length and 25 m 
width were produced on increasingly grid size with ∆x = ∆y = 
500 mm (coarse grids), ∆x = ∆y = 100 mm (medium grids), 
and ∆x = ∆y = 50 mm (fine grids). The medium grid size ∆x = 
∆y = 100 mm was sufficient to convergence. Therefore, ∆x = 
∆y = 100 mm was chosen for numerical simulations of 
solitary wave propagation. The numerical predictions of free 
surface profiles of solitary wave for different time steps (∆t = 
0.05, 0.,1 and 0.2 s) revealed that ∆t = 0.05 s was sufficient for 
producing accurate simulations. 

VI. FREE SURFACE SLOSHING OF EVEN HARMONIC 

COMPONENTS OF AN INITIAL GAUSSIAN HUMP IN A SQUARE 

FLAT-BASIN 

The numerical solver of the 2D level I GN equations is 
verified for nonlinear free surface sloshing motions arising 
from the even harmonic components of an initial Gaussian 
hump and an initial Gaussian trough. According to [17], [18], 
the even harmonics components are obtained by simulating 
the free surface time series resulting from releasing the initial 
hump, and the corresponding free surface time histories 
produced by an initial trough of equal but opposite shape to 

the hump. The free surface elevation of Gaussian hump, , 

is: 
 

   (16) 

 
where a is the wave amplitude; b is spreading parameter; and 
Lx and Ly are the length and width of the basin. The free 

surface elevation of Gaussian trough,  , is: 
 

  (17) 

 

The even harmonics are obtained by additions . 

A basin of 7.5 m length and 7.5 m width is selected in 
which the constant water depth is h0 = 0.45 m. The initial 
amplitude of the hump and trough, a, is 0.225 m and the 
spreading parameter b = 2 m-2.   

Figs. 1 and 2, respectively, present the analytical and 
numerical predictions of free surface elevation time history of 
the initial Gaussian hump, Gaussian trough and even 
harmonics components at the centre of basin for a total 
simulation time of 40 s. As it is observed in Fig. 1, the 
analytical solution is not capable to show the nonlinear 
behaviour of even harmonics. However, in Fig. 2, it is possible 
to see evidence of the nonlinear effect produced by even 
harmonics. Moreover, Fig. 2 reveals that the even harmonics 
have amplitudes of up to about 20% that of the initial hump. 
The foregoing discrepancies in Figs. 1 and 2 are largely due to 
nonlinear (second-order and higher-order) wave interactions. 
The nonlinearity of wave interactions is adequately modelled 
by the 2D level I GN equations, while it is totally neglected in 
the analytical solution. 

To understand better the resonant free surface motions 
driven by an initial Gaussian disturbance, it is useful to carry 
out spectral analysis using a Fast Fourier Transform (FFT) of 
the free surface elevation time series.  The FFT reveals the 
variance of the signal within a given frequency. Each FFT plot 
includes a series of magnitude peaks, each associated with a 
particular frequency.  

Fig. 3 presents comparison of analytically predicted FFT 
spectrum for the free surface elevation time history of the 
initial Gaussian hump, numerically predicted FFT spectrum 
for the free surface elevation time history of the initial 
Gaussian hump and numerically predicted FFT spectrum for 
the free surface elevation time history of even harmonics 
components at the centre of basin. It can be observed that all 
five peaks of numerical Gaussian hump occur at the same 
frequency of the analytically predicted peaks of Gaussian 
hump. Also, all five peaks of numerical even harmonics occur 
at the same frequency of the analytically predicted peaks of 
Gaussian hump. 

Fig. 4 shows the even harmonic free surface profiles along 
the basin at times t = 0.5 s and 1 s for analytical and numerical 
simulations. In Figs. 4 (a) and (b), the analytical solution is not 
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capable of showing the nonlinear behaviour of even harmonics 
while, the effect of nonlinearity is evident in numerical 

simulations in Figs. 4 (c) and (d), as can be seen by the wave 
motions in the even harmonics.  

 

 

Fig. 1 Analytically predicted free surface elevation time histories at the centre of a basin for sloshing of an initial Gaussian hump (solid line), 
Gaussian trough (dash line) and even harmonics (cross symbols) 

 

 

Fig. 2 Numerically predicted free surface elevation time histories at the centre of a basin for sloshing of an initial Gaussian hump (solid line), 
Gaussian trough (dash line) and even harmonics (cross symbols) 

 

 

Fig. 3 Comparison of analytical FFT spectrum (solid line) and numerical FFT spectrum (diamond line) of the free surface elevation time 
history of the initial Gaussian hump with the numerically predicted FFT spectrum of even harmonics (cross symbols) 
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Fig. 4 Initial Gaussian hump (solid line), Gaussian trough (dash line) and even harmonics (cross symbols) profiles along the centerline of the 
basin: (a) and (b) analytically predicted profiles at t = 0.5 s and 1 s. (c), and (d) numerically predicted profiles at t = 0.5 s and 1 s 

 
VII. SOLITARY WAVE PROPAGATION IN WALL-BOUNDED 

BASIN 

The free surface profile of the solitary wave is given by [10] 
 

   2
02

0 0

1 3
( , , ) sech

2

a
x y t a x h a t

h h a


         
g  (18) 

 
Here,  refers to the free surface above still water level; a is 

amplitude, h0 is still the water depth, g is the gravitational 
acceleration, and t is the time. Reference [10] also derives the 
following expression for horizontal velocity components in the 
positive x-direction:  
 

0

0

( , , ) 1 , ( , , )
( , , )

h
u x y t c v x y t

x y t h
 

    
0  (19) 

 
For oblique solitary wave, the coordinate axis is 

transformed. Hence, the horizontal velocity components are 
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   (20)

 

 

 

Fig. 5 Comparison between numerical prediction (solid line) and analytical solution (cross symbols) of free surface elevation profiles of 
solitary wave at times (a) t = 1 s and (b) t = 3 s 
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where 

   
   

cos sin

sin cos

x x y

y x y

 

 

  

  
     (21) 

 

x  and y  are the transformed coordinate axis. A basin of 25 

m length and 25 m width is selected. The still water depth is h0 
= 1 m and the solitary wave has amplitude of a = 0.6 m.  Two 
solitary wave tests were undertaken; one where the wave 
propagates from west to east in the positive x-direction, and 
another where the wave propagates at an angle θ = 30o to the 
x-axis. Figs. 5 (a) and (b), respectively, show direct 
comparison between numerical prediction and analytical 
solution of the free surface profiles of solitary wave at times t 
= 1 s and 3 s where the wave propagates from west to east in 
the positive x-direction. Figs. 5 (a) and (b) represent complete 
agreement between the numerical prediction and the linear 
analytical solution. This case verifies that the numerical 
scheme yields a correct representation of the underlying 
mathematical description provided that the waves are nearly 
linear. Figs. 6 (a)-(c) depict 3D visualisation of the numerical 
predictions of evolution of the solitary wave at times t = 1, 5, 
and 10 s on the converged grid with ∆x= ∆y= 100 mm and 
time step Δt = 0.05 s where the wave propagates from west to 
east in the positive x-direction over flat-bed basin. At first, the 
solitary wave propagates with its free surface profile 
unchanging in shape as it moves along the channel (see result 
at t = 1 s).  At t ~ 5 s, the solitary wave crest hits the wall and 
its elevation, runs up elevation, reaches 2.355 m which is more 

than twice the elevation prior to contact. The reflected wave 
sheds some trailing waves which are evident behind the 
reflected wave as it travels from east to west as shown in the 
plot for t = 10 s. Comparison between the present GN 
numerical solver prediction and result from perturbation 
analysis confirms that nonlinear interaction between a solitary 
wave and a solid wall is correctly modelled. Based on 
perturbation analysis, the total run up elevation, R, is: 

 
2 3 4 5

0 1 2
2 4 4 4

s s s s
R h s


     


 

                             
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97 9
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s s s
O s


    


     (22) 

 
in which s is amplitude of wave (a) divided by still water 

depth (h0). By including the second-order perturbation term, 
the approximated analytical solution for the reflected solitary 
wave elevation is 2.3454 m, a quite similar value to that 
predicted by the GN model (2.355 m). The next verification 
test of 2D level I GN equations comprises the simulation of an 
oblique solitary wave (θ = 30o) in a 25 m by 25 m basin. Fig. 6 
(d) depicts the numerical solver visualisation of free surface 
profile at t = 0.1 s.  The oblique wave retains its shape with 
time as it moves from west to east, except at the boundaries 
where wall interactions take place. This indicates that the 
model can cope properly with a wave at an angle to the grid. 

 

 

(a)                   (b) 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:3, 2018

313

 

 

(c)             (d) 

Fig. 6 Numerically predicted 3D visualisation of free surface profiles of solitary wave: The solitary wave moving west to east in positive x-
direction at (a) t = 1 s, (b) t = 5 s, (c) t = 10 s, and (d) oblique solitary wave profile (θ = 30o) at t = 0.1 s 

 
VIII. INTERACTION OF TWO SOLITARY WAVES IN WALL-

BOUNDED BASIN 

Solitary waves of 0.6 m and 0.3 m initial amplitudes in 
otherwise still water of depth 1 m are simulated in a closed 
basin of planned dimensions Lx = Ly = 100 m. The convergence 
predictions for numerical scheme are obtained on fine grids ∆x 
= ∆y = 100 mm and a fixed time step ∆t = 0.05 s. Fig. 7 
presents evolution of the two solitary waves at (a) t = 0 s, (b) t 
~ 16 s, (c) t = 17 s, and (d) t ~ 18 s where the waves propagate 
from west to east in the positive x-direction. In Fig. 7, free 
surface profiles of the solitary waves are simulated by linear 
analytical solution (cross symbols) and numerical solver (solid 

line).  
In numerical prediction at t ~ 16 s, the large-amplitude 

solitary wave reaches the small-amplitude solitary wave, and 
after the collision of small-amplitude wave with the wall, the 
two waves will be merged at t = 17 s. The elevation of the 
combined wave reaches 0.932 m in numerical prediction. The 
elevation of the combined wave in analytical prediction is 0.6 
m which is equal to the amplitude of the large wave. The 
foregoing discrepancies are largely due to nonlinear wave 
interaction modelled by the GN equations. Finally, at t ~ 18 s, 
numerical waves with different amplitudes propagate 
separately. 
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Fig. 7 Comparison between analytically predicted free surface elevation profile (cross symbols) and numerically predicted free surface 
elevation profile (solid line) for the interaction of two solitary waves at (a) t = 0 s; (b) t ~ 16 s; (c) t = 17 s; and (d) t ~ 18 s 

 
IX. CONCLUSION 

This study presents the 2D level I GN equations and their 
discretisations using second-order finite differences in space 
and a fourth-order Runge-Kutta scheme in time. To verify the 
developed numerical solver of 2D GN equations, a series of 
standard benchmark tests were performed including free 
surface sloshing of even harmonic components of an initial 
Gaussian hump and solitary wave propagation. The analytical 
solution was not capable of showing the nonlinear behaviour 
of even harmonics. However, the effect of nonlinearity was 
evident in numerical predictions of the even harmonics. The 
even harmonics had amplitudes of up to about 20% that of the 
initial hump. FFT analyses were also performed to highlight 
the frequency content of the results. All five peaks of 
numerical even harmonics occurred at the same frequency of 
the analytically predicted peaks of Gaussian hump. It was 
observed that numerical solver produced accurate simulations 
of solitary wave propagation when the results were compared 
against a standard linear solution. Comparison between the 
numerical prediction and result obtained from perturbation 
analysis confirmed that nonlinear interaction between solitary 
wave and a solid wall was correctly modelled. When the 
solitary wave hits the wall, the numerically predicted run up 
reaches 2.355 m which is 0.355 m more than the predicted 
linear analytical solution. By including the second-order 
perturbation term, the approximated analytical solution for the 
reflected solitary wave elevation was 2.3454 m, a quite similar 
value to the run up elevation predicted by the GN model. 
Simulation of solitary wave propagated at an angle θ = 30o to 
the x-axis showed that the model was capable of coping with a 
wave at an angle to the grid. The developed GN numerical 
solver produced accurate predictions of interaction of two 
solitary waves. The discrepancies between numerical 
simulation and analytical solution were largely due to 
nonlinear wave interactions which are adequately modelled by 
the developed GN equations. However, the nonlinearity of 
wave interactions is completely neglected in the analytical 
solution. 
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