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 
Abstract—The solution of the nonlinear dynamic equilibrium 

equations of base-isolated structures adopting a conventional 
monolithic solution approach, i.e. an implicit single-step time 
integration method employed with an iteration procedure, and the use 
of existing nonlinear analytical models, such as differential equation 
models, to simulate the dynamic behavior of seismic isolators can 
require a significant computational effort. In order to reduce 
numerical computations, a partitioned solution method and a one 
dimensional nonlinear analytical model are presented in this paper. A 
partitioned solution approach can be easily applied to base-isolated 
structures in which the base isolation system is much more flexible 
than the superstructure. Thus, in this work, the explicit conditionally 
stable central difference method is used to evaluate the base isolation 
system nonlinear response and the implicit unconditionally stable 
Newmark’s constant average acceleration method is adopted to 
predict the superstructure linear response with the benefit in avoiding 
iterations in each time step of a nonlinear dynamic analysis. The 
proposed mathematical model is able to simulate the dynamic 
behavior of seismic isolators without requiring the solution of a 
nonlinear differential equation, as in the case of widely used 
differential equation model. The proposed mixed explicit-implicit 
time integration method and nonlinear exponential model are adopted 
to analyze a three dimensional seismically isolated structure with a 
lead rubber bearing system subjected to earthquake excitation. The 
numerical results show the good accuracy and the significant 
computational efficiency of the proposed solution approach and 
analytical model compared to the conventional solution method and 
mathematical model adopted in this work. Furthermore, the low 
stiffness value of the base isolation system with lead rubber bearings 
allows to have a critical time step considerably larger than the 
imposed ground acceleration time step, thus avoiding stability 
problems in the proposed mixed method. 
 

Keywords—Base-isolated structures, earthquake engineering, 
mixed time integration, nonlinear exponential model. 

I. INTRODUCTION 

EISMIC base isolation has become a widely accepted 
technique for earthquake protection of buildings and 

bridges. The concept of base isolation is quite simple: the 
introduction of a flexible base isolation system between the 
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foundation and the structure allows to move the period of the 
latter away from the predominant period of the ground motion 
with the benefit of reducing floor accelerations, story shears 
and interstory drifts [1], [2]. 

A conventional monolithic solution approach, characterized 
by the use of an implicit single-step time integration method 
adopted with the Newton-Raphson or the pseudo-force 
iteration procedure, is generally employed to solve the 
nonlinear dynamic equilibrium equations of seismically 
isolated structures subjected to earthquake excitation [3]. 
Existing phenomenological models [4]-[7] and plasticity-
based models [8]-[10] can be adopted to predict the dynamic 
behavior of seismic devices. 

Among conventional monolithic solution methods and 
nonlinear mathematical models, the solution algorithm and 
analytical model proposed by [4], both implemented in the 
computer program 3D-BASIS-ME-MB [11], are presented and 
adopted in this paper because specifically developed for 
nonlinear dynamic analysis of base-isolated structures with 
either elastomeric and/or sliding isolation systems. In this 
monolithic solution approach, the equations of motion are 
solved using the implicit unconditionally stable Newmark's 
constant average acceleration method with the nonlinear 
restoring forces of the seismic isolators being represented as 
pseudo-forces. An iterative procedure consisting of corrective 
pseudo-forces is employed within each time step until 
equilibrium is achieved. The analytical model, based on the set 
of two first-order ordinary nonlinear differential equations 
proposed by [12], is able to represent the uniaxial and biaxial 
behavior of both elastomeric and sliding isolation bearings. 

Since the solution of the nonlinear dynamic equilibrium 
equations using the above-described conventional implicit 
single-time step integration method and the use of the 
differential equation model can increase the computational 
effort very significantly, in this work, a partitioned solution 
approach [13] and a one dimensional (1D) nonlinear analytical 
model are proposed in order to reduce numerical 
computations. 

Partitioned time integration methods have been developed 
by several authors in the last 30 years to allow different time 
steps or time integration algorithms or both to be used in 
different spatial subdomains of the mesh [14]-[18]. In the case 
of seismically isolated structures, the above-mentioned 
partitioned solution approach can be easily applied being the 
decomposition of the discrete structural model of such 
structures driven by physical considerations: The base 

Nonlinear Dynamic Analysis of Base-Isolated 
Structures Using a Partitioned Solution Approach and 

an Exponential Model 
Nicolò Vaiana, Filip C. Filippou, Giorgio Serino 

S



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:11, No:2, 2017

179

 

 

isolation system is much more flexible than the superstructure 
to decouple the latter from the earthquake ground motion. 
Thus, an explicit conditionally stable time integration method 
can be used to evaluate the base isolation system response, and 
an implicit unconditionally stable time integration method can 
be adopted to predict the superstructure response with the 
remarkable benefit in avoiding the iterative procedure within 
each time step of a nonlinear time history analysis required by 
conventional implicit time integration methods. 

The 1D Nonlinear Exponential Model (NEM), able to 
simulate the dynamic response of seismic isolators having a 
typical symmetric softening force-displacement hysteresis 
loop within a relatively large displacements range, such as 
elastomeric and sliding bearings, allows to avoid the 
numerical solution of the nonlinear differential equations 
required in the analytical model proposed by [4]. 

The proposed partitioned solution method and nonlinear 
analytical model are adopted to analyze a three-dimensional 
(3D) base-isolated structure with a lead rubber bearing system 
subjected to earthquake excitation. The numerical results and 
the computational time are compared with those obtained by 
using the solution algorithm and the differential equation 
model proposed by [4] in order to demonstrate the accuracy 
and the computational efficiency of the proposed solution 
approach and analytical model. 

II. EQUATIONS OF MOTION 

In this section, the equations of motion for a typical base-
isolated structure subjected to earthquake excitation are 
formulated. The 3D discrete structural model of such a system 
can be decomposed into two substructures: the n-story 
superstructure, considered to remain elastic during the 
earthquake excitation, and the base isolation system consisting 
of seismic isolation bearings and a full diaphragm above the 
seismic devices [19]. 

In this work, a global coordinate system, denoted with 
upper case letters X, Y, and Z, is attached to the mass center of 
the base isolation system. Each floor diaphragm is assumed to 
be infinitely rigid in its own plane, the columns are assumed to 
be axially inextensible, the beams are considered to be axially 
inextensible and flexurally rigid, and the isolation devices are 
considered rigid in the vertical direction. Thus, the total 
number of Degrees of Freedom (DOFs) of the 3D structural 
model of a base-isolated structure is equal to 3n + 3. The i-th 
floor diaphragm has three DOFs defined at the diaphragm 

reference point io , which is vertically aligned to the global 

coordinate system origin O. The DOFs for the i-th floor are 
the translation ixu  along the X-axis, the translation iyu  along 

the Y-axis, and the rotation iu  about the vertical axis Z; ixu  

and iyu  are defined relative to the ground. The 3n 

superstructure DOFs are listed in the displacement vector su  

whereas the three DOFs of the base isolation system are listed 
in the displacement vector bu . The i-th diaphragm mass is 

lumped in its mass center )( iCM  which is also the geometric 

center. 
The earthquake excitation is defined by the horizontal 

ground acceleration )(tug  whose line of action is defined by 

the angle g  that the epicentral direction forms with the X-

axis. 
The equations of motion of the 3D discrete structural model 

of a base-isolated structure are: 
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with 

 T     0cc 1 ,                                   (2) 
 

 T     0kk 1 ,                                   (3) 
 

 T 
ggggg  uu 0)sin()cos(   u ,                (4) 

 
where sm , sc , and sk  are the superstructure mass, damping, 

and stiffness matrices, respectively. Taking into account that 
the base isolation system can include linear and nonlinear 
isolation elements, bm  is the isolation system mass matrix, bc  

is the damping matrix of linear viscous isolation elements, bk  

is the stiffness matrix of linear elastic isolation elements, and 

nf  is the resultant nonlinear forces vector of nonlinear 

elements. In addition, 1c  and 1k  are the viscous damping and 

stiffness matrices of the superstructure first story, sr  and br  are 

the superstructure and base isolation system influence 
matrices, respectively, and gu  is the ground acceleration 

vector. 

III. CONVENTIONAL SOLUTION METHOD AND ANALYTICAL 

MODEL 

Among conventional monolithic solution methods generally 
used to solve the nonlinear dynamic equilibrium equations of 
structures subjected to earthquake excitation, the solution 
algorithm proposed by [4] is presented in the following 
because specifically developed for the analysis of base-
isolated structures. In this monolithic solution approach, the 
equations of motion are discretized using the implicit 
unconditionally stable Newmark's constant average 
acceleration method. Since the nonlinear forces vector nf  is 

function of both displacement and velocity vectors at time 
Δtt  , it is transferred to the right-hand side of (1) and treated 

as pseudo-forces vector. Thus, an iterative procedure 
consisting of corrective pseudo-forces is adopted within each 
time step until equilibrium is achieved. For brevity, in this 
paper, the above-described implicit time integration method 
adopted in conjunction with the pseudo-force approach is 
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referred to as the Pseudo-Force Method (PFM). 
Nagarajaiah et al. [4] also proposed an analytical model 

able to represent the uniaxial and biaxial behavior of both 
elastomeric and sliding bearings. For an elastomeric bearing, 
the nonlinear restoring forces along the orthogonal directions 
X and Y are described by: 

 

xyx
y

nx z f αu 
y

f
 αf )1(  ,                        (5) 

 

yyy
y

ny z f αu 
y

f
 αf )1(  ,                        (6) 

 
where   is the post-yield to the pre-yield stiffness ratio, yf  is 

the yield force, y is the yield displacement, xu  and yu  

represent the displacements of the isolation device in the X 
and Y directions, respectively. 

For a flat sliding bearing, the nonlinear restoring forces 
along the two orthogonal directions X and Y are given by: 
 

xnx z N f  ,                                     (7) 
 

yny z N f  ,                                      (8) 

 
in which N is the vertical load carried by the bearing, and   is 

the coefficient of sliding friction, which depends on the 
bearing pressure and the instantaneous velocity of sliding. The 
dimensionless variables xz  and yz  are governed by the 

following system of two coupled first-order ordinary nonlinear 
differential equations proposed by [12]: 
 

 
 

 
  ,

)(sgn

)(sgn

)(sgn

)(sgn
2

2















































y

x

yy y

yyyx

xxyx

xxx

y

x

y

x

u

u
 

 zu   z   

 zu   zz

 zu  zz

 zu    z

u A

u A

y z

y z
























(9) 

 
in which A,  , and   are dimensionless quantities that 

control the shape of the hysteresis loop, xu  and yu  are the 

velocities that occur at the isolation device in X and Y 
directions, respectively. The unconditionally stable semi-
implicit Runge-Kutta method [20] is proposed by [4] to solve 
the differential equations governing the behavior of each 
nonlinear isolation element. 

The biaxial interaction can be neglected when the off-
diagonal elements of the matrix in (9) are replaced by zeros. 
This results in a uniaxial model with two independent 
elements in the two orthogonal directions. For brevity, in this 
paper, the above-described uniaxial analytical model is 
referred to as the Bouc-Wen Model (BWM). 

IV. PROPOSED PARTITIONED SOLUTION METHOD AND 

ANALYTICAL MODEL 

A partitioned solution method can be easily adopted to 
analyze seismically base-isolated structures being the base 
isolation system much more flexible than the superstructure to 
decouple the latter from the earthquake ground motion. In this 
work, the explicit second order central difference method is 
proposed to predict the nonlinear response of the base 
isolation system whereas the implicit second order Newmark's 
constant average acceleration method, also called trapezoidal 
rule, is proposed to compute the linear response of the 
superstructure. Thus, in each time step of a nonlinear time 
history analysis, the proposed partitioned solution approach 
requires first the solution of the base isolation system 
response, then these results are used for the evaluation of the 
superstructure response. 

The proposed Mixed Explicit-Implicit single-time step 
integration Method (MEIM) is conditionally stable because 
the central difference method is employed to compute the 
nonlinear response of the base isolation system. As will be 
shown in Section V, in seismically base-isolated structures, 
the typical low stiffness value of the base isolation system 

generally allows to have a critical time step crt  larger than 

the short time step used to define the ground acceleration 
accurately. Considering the 3D discrete structural model of a 
base-isolated structure, the critical time step  /Ttcr   can be 

evaluated considering the lowest natural period given by the 
following eigenvalue problem: 

 
2 ΩΦmΦk   b

h
b  ,                               (10) 

 

where h
bk  is the stiffness matrix of the base isolation system 

assembled using the highest horizontal stiffness of each 
nonlinear element, Φ  is the modal matrix, and 2Ω  the 
spectral matrix of the eigenvalue problem. 

In the following, a 1D NEM, able to simulate the dynamic 
behavior of seismic isolators having a continuously decreasing 
stiffness with increasing displacement, is proposed. 

The continuously decreasing tangent stiffness function 
)(ukt  can be expressed by the following two mathematical 

expressions, valid for a loading and an unloading curve, 
respectively: 

 
)(

212 )()( minu  u a
t e kkkuk  ,   )( 0u            (11) 

 
)(

212 )()( u u a
t

maxe kkkuk  ,   )( 0u            (12) 
 

where 1k  and 2k  are the initial and the asymptotic values of 

the tangent stiffness, maxu  and minu  are the horizontal 

displacement values at the most recent point of unloading and 
loading, respectively, and a is a parameter that defines the 

transition from 1k  to 2k . Integrating (11) and (12), the 

following nonlinear hysteretic restoring force is obtained: 
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where 21 kk  b  . 

It is worth noticing that the presented analytical model 
requires the evaluation of only three parameters, i.e. 1k , 2k , 

and a, whereas, in the uniaxial analytical model presented in 
Section III, the number of parameters to be identified is equal 
to six for both elastomeric and flat sliding bearings. 

V. NUMERICAL APPLICATION 

In the following, the nonlinear dynamic response of a 3D 
base-isolated structure subjected to earthquake excitation is 
predicted using the PFM and the proposed MEIM. The BWM 
is adopted when the nonlinear time history analysis is 
performed with the PFM (PFM-BWM), whereas the proposed 
NEM is employed when the nonlinear dynamic analysis is 
carried out using the MEIM (MEIM-NEM). The main aim of 
the following numerical application is to demonstrate the 
significant reduction of the computational effort due to the use 
of the proposed partitioned solution approach and nonlinear 
analytical model. 

A. Analyzed 3D Base-Isolated Structure 

The superstructure is a four-story reinforced concrete 
structure with plan dimensions 19 m x 11 m, and story height 
h = 3.5 m. The weight of the superstructure is 9921.24 kN and 
the first three natural periods are 0.33 s, 0.33 s, and 0.26 s, 
respectively. Each superstructure diaphragm mass includes the 
contributions of the dead load and live load on the floor 
diaphragm and the contributions of the structural elements and 
of the nonstructural elements between floors. 

The base isolation system, having a total weight of 3006.44 
kN, consists of an orthogonal mesh of foundation beams 
having rectangular cross section with dimensions 60 cm x 75 
cm, and 24 identical Lead Rubber Bearings (LRBs), 
positioned centrically under all columns. 

As a result of the kinematic constraints assumed in Section 
II, the total number of DOFs, defined relative to the ground, is 
equal to 15. The typical floor plan and a section of the 
analyzed 3D base-isolated structure are shown in Fig. 1. 

 

 

(a) 

 

(b) 

Fig. 1 Four-story reinforced concrete base-isolated structure. (a) 
typical floor plan; (b) section A-A’ 

 
TABLE I 

ANALYTICAL MODELS PARAMETERS 

BWM yf  [N] y [m]   A    

 45400 0.017 0.10 1 0.5 0.5 

NEM 1k  [N/m] 2k  [N/m] a    

 4513478 265499 50    

 
The base isolation system has been designed in order to 

provide an effective isolation period effT  = 2.50 s and an 

effective viscous damping eff  = 0.15 at the design 

displacement dd  = 0.50 m. Each elastomeric bearing has a 

yield force yf  = 45400.3 N, a yield displacement y = 0.017 m 

and a post-yield to pre-yield stiffness ratio   = 0.10. 

B. Analytical Models Parameters 

Table I shows the parameters of the two analytical models 
adopted to simulate the dynamic behavior of each LRB. 

Fig. 2 illustrates the theoretical force-displacement 
hysteresis loops produced by use of the BWM and the NEM. 
They are obtained, as done in experimental tests, by applying 
a sinusoidal harmonic displacement having amplitude equal to 
0.50 m and frequency of 0.40 Hz. It can be seen that the two 
analytical models adopting the parameters listed in Table I can 
reproduce hysteresis loops having the same area and effective 
stiffness. 

C. Dynamic Response of the 3D Base-Isolated Structure 

Harmonic ground motion, having amplitude 0gu  = 2.5 m/s2, 

frequency g  = 2  rad/s, and time duration dt  = 20 s, is 

imposed with an angle g  equal to π /6. The time step of the 

harmonic earthquake excitation is chosen equal to 0.005 s 
because normally 200 points per second are used to define 
accurately an acceleration record [3]. 

Table II gives the Nonlinear Time History Analyses 
(NLTHAs) results obtained using the PFM-BWM and the 
proposed MEIM-NEM, both implemented on the same 
computer (Intel® Core™ i7-4700MQ processor, CPU at 2.40 
GHz with 16 GB of RAM) by using the computer program 
Matlab and verified using SAP2000. In the PFM-BWM, the 
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adopted convergence tolerance value is equal to 810 , and the 
unconditionally stable semi-implicit Runge-Kutta method [20] 
is employed to solve the differential equations governing the 

behavior of each nonlinear isolation element with a number of 
steps equal to 50. 

 
TABLE II 

NLTHAS RESULTS WITH t  = 0.005 S 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )4(MC

xu  [g] 
)4(MC

yu  [g] 

 tct [s] tctp max min max min max min max min 

PFM-BWM 373.24 - 0.071 -0.065 0.099 -0.146 0.329 -0.342 0.591 -0.562 

MEIM-NEM 1.25 0.33% 0.073 -0.060 0.095 -0.140 0.323 -0.331 0.512 -0.527 

 
TABLE III 

NLTHAS RESULTS WITH t  = 0.001 S 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )4(MC

xu  [g] 
)4(MC

yu  [g] 

 tct [s] tctp max min max min max min max min 

MEIM-NEM 5.73 1.53% 0.073 -0.060 0.095 -0.140 0.325 -0.325 0.514 -0.510 

 

 

Fig. 2 Simulated force-displacement hysteresis loops 
 
The comparison of the maximum and minimum values of 

the bMC  displacements and 4MC  accelerations in X and Y 

directions, obtained using the PFM-BWM and the MEIM-
NEM, reveals that the proposed partitioned solution approach 
and analytical model provide numerical results that are close 
enough to those obtained adopting the PFM-BWM. 

As regards the stability of the MEIM, the critical time step 

crt , evaluated considering the lowest natural period given by 

the eigenvalue problem in (10), is equal to 0.12 s. It is clear 
that the low stiffness value of the base isolation system allows 
to have a critical time step considerably larger than the 
imposed ground acceleration time step, thus avoiding stability 
problems. 

As far as the computational efficiency is concerned, the 
total computational time, tct, required by the MEIM-NEM is 
significantly reduced in comparison to the PFM-BWM. It 
must be noted that the comparisons using the tct are 
meaningful only qualitatively because it depends on the CPU 
speed, memory capability and background processes of the 
computer used to obtain the previous results. To this end, in 

order to normalize the computational time results, Table II 
also shows the percentage of the MEIM-NEM tct evaluated 
with respect to the PFM-BWM tct as follows:

  100
BWMPFM

NEMMEIM
%NEMMEIM 

tct -

tct -
 tctp - . 

In addition, according to the numerical results listed in 
Table III, the proposed MEIM-NEM, performed with a 
smaller time step, that is, t  = 0.001 s, requires less 
computational effort than the PFM-BWM even if the latter is 
performed using the larger time step ( t  = 0.005 s). Indeed, in 
this case, the MEIM-NEM tctp, referred to the PFM-BWM tct 
evaluated adopting t  = 0.005 s, is equal to 1.53 %. 

Figs. 3 and 4 illustrate, respectively, the displacement time 
history of the bMC  and the acceleration time history of the 

4MC  for a time duration of the harmonic earthquake excitation 

dt  = 10 s. The good agreement is evident between responses 

computed using the PFM-BWM and the proposed MEIM-
NEM. 
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(b) 

Fig. 3 Displacement time history of the base isolation system mass 
center in (a) X and (b) Y directions 

 

 

(a) 
 

 

(b) 

Fig. 4 Acceleration time history of the superstructure fourth story 
mass center in (a) X and (b) Y directions 

VI. CONCLUSIONS 

A MEIM and a NEM have been proposed in order to reduce 
numerical computations in the nonlinear time history analysis 
of base-isolated structures. 

In the proposed solution algorithm, the nonlinear response 
of the base isolation system is computed first using the explicit 
central difference method, then the implicit Newmark’s 
constant average acceleration method is adopted to evaluate 
the superstructure linear response. Thus, the MEIM does not 
require an iterative procedure for each time step of a nonlinear 
dynamic analysis. 

The presented NEM is able to simulate the dynamic 
behavior of seismic isolators avoiding the solution of a 
nonlinear differential equation required in differential equation 
models.  

From the numerical results presented in the paper, the 
following conclusions can be drawn: 
(1) The presented MEIM and NEM provide results that are 

close enough to those obtained adopting the PFM and the 
BWM, for both two values of time step used in the 
nonlinear time history analyses of the analyzed 3D base-
isolated structure with LRBs; 

(2) The low stiffness value of the base isolation system with 
LRBs allows to have a critical time step considerably 
larger than the imposed ground acceleration time step, 
thus avoiding stability problems in the proposed MEIM; 

(3) The tct required by the MEIM-NEM is significantly 
reduced in comparison to the PFM-BWM: the MEIM-
NEM tctp, evaluated with respect to the PFM-BWM tct 
for a t  = 0.005 s, is equal to 0.33 %. In addition, the 
MEIM-NEM, performed with a smaller time step, that is, 

t  = 0.001 s, requires less computational effort than the 
PFM-BWM even if the latter is performed using the 
larger time step (i.e., t  = 0.005 s): indeed, the MEIM-
NEM tctp, referred to the PFM-BWM tct evaluated 
adopting t  = 0.005 s, is equal to 1.53 %. 
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