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 
Abstract—In order to reduce numerical computations in the 

nonlinear dynamic analysis of seismically base-isolated structures, a 
Mixed Explicit-Implicit time integration Method (MEIM) has been 
proposed. Adopting the explicit conditionally stable central 
difference method to compute the nonlinear response of the base 
isolation system, and the implicit unconditionally stable Newmark’s 
constant average acceleration method to determine the superstructure 
linear response, the proposed MEIM, which is conditionally stable 
due to the use of the central difference method, allows to avoid the 
iterative procedure generally required by conventional monolithic 
solution approaches within each time step of the analysis. The main 
aim of this paper is to investigate the stability and computational 
efficiency of the MEIM when employed to perform the nonlinear 
time history analysis of base-isolated structures with sliding bearings. 
Indeed, in this case, the critical time step could become smaller than 
the one used to define accurately the earthquake excitation due to the 
very high initial stiffness values of such devices. The numerical 
results obtained from nonlinear dynamic analyses of a base-isolated 
structure with a friction pendulum bearing system, performed by 
using the proposed MEIM, are compared to those obtained adopting a 
conventional monolithic solution approach, i.e. the implicit 
unconditionally stable Newmark’s constant acceleration method 
employed in conjunction with the iterative pseudo-force procedure. 
According to the numerical results, in the presented numerical 
application, the MEIM does not have stability problems being the 
critical time step larger than the ground acceleration one despite of 
the high initial stiffness of the friction pendulum bearings. In 
addition, compared to the conventional monolithic solution approach, 
the proposed algorithm preserves its computational efficiency even 
when it is adopted to perform the nonlinear dynamic analysis using a 
smaller time step. 
 

Keywords—Base isolation, computational efficiency, mixed 
explicit-implicit method, partitioned solution approach, stability. 

I. INTRODUCTION 

HE numerical solution of nonlinear dynamic equilibrium 
equations of seismically base-isolated structures adopting 

a conventional monolithic solution approach, i.e. an implicit 
single-step time integration method employed in conjunction 
with an iterative procedure, can require considerable 
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computational effort. 
In order to achieve a substantial reduction in computation, a 

partitioned solution approach [1] can be used to perform the 
analysis. In the context of base-isolated structures, the above-
mentioned approach can be easily employed being the 
decomposition of the discrete structural model of such 
structures driven by physical considerations: the base isolation 
system is much more flexible than the superstructure to 
decouple the latter from the earthquake ground motion [2]. 

In the last 30 years, various authors [3]-[7] developed 
several partitioned time integration methods allowing different 
time steps or time integration algorithms or both to be used in 
different spatial subdomains of the mesh. 

Vaiana et al. [2] proposed a Mixed Explicit-Implicit time 
integration Method (MEIM) specifically for the nonlinear 
dynamic analysis of base-isolated structures under earthquake 
excitation: in each time step of the analysis, the nonlinear 
response of the base isolation system is computed first using 
the explicit conditionally stable central difference method, 
then the implicit unconditionally stable Newmark’s constant 
average acceleration method is employed to evaluate the 
superstructure linear response. Thus, the proposed solution 
algorithm allows to evaluate the nonlinear response of base-
isolated structures without adopting an iterative procedure 
generally required by conventional monolithic solution 
approaches within each time step of the nonlinear time history 
analysis. 

Since the proposed MEIM is conditionally stable due to the 
use of the central difference method, in this work, a procedure 
to evaluate the critical time step is first developed for two-
dimensional (2D) base-isolated structures and then extended to 
the three-dimensional (3D) case. 

The main aim of this paper is to investigate the stability and 
the computational efficiency of the MEIM when adopted for 
the nonlinear dynamic analysis of base-isolated structures 
having seismic isolators with very high initial stiffness values, 
such as sliding bearings, for which the critical time step could 
become smaller than the one used to define accurately the 
earthquake excitation. To this end, the numerical results 
obtained from nonlinear dynamic analyses of a 3D base-
isolated structure with a friction pendulum bearing (FPB) 
system subjected to bidirectional earthquake excitation, 
performed using the MEIM, are compared to those obtained 
using a conventional monolithic solution approach, developed 
by [8] specifically for the analysis of base-isolated structures. 
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II. STRUCTURAL MODEL AND EQUATIONS OF MOTION 

In this section, the discrete structural model of a typical 
seismically base-isolated structure is described, and the 
equations of motion are formulated. 

The discrete structural model of such a system can be 
decomposed into two substructures: the n-story superstructure 
and the base isolation system consisting of seismic isolation 
bearings and a full diaphragm above the seismic devices. Fig. 
1 shows the discrete structural model of a typical two-story 
base-isolated structure. 

 

 

Fig. 1 Discrete structural model of a typical two-story base-isolated 
structure 

 
The superstructure is considered to remain elastic during the 

earthquake excitation. This assumption, which is reasonable in 
the context of seismically base-isolated structures because the 
introduction of a flexible base isolation system generally 
reduces the earthquake response in such a way that the 
superstructure deforms within the elastic range, allows to 
decrease the computational effort of a nonlinear time history 
analysis. In order to adequately represent the elastic behavior 
of the superstructure, a 3D discrete structural model with three 
Degrees of Freedom (DOFs) per floor has to be adopted. In 
this work, the elastic superstructure is assumed to be a 3D 
shear building, thus floor diaphragms are considered to be 
rigid in its own plane, the beams are considered to be axially 
inextensible and flexurally rigid, and the columns are 
considered to be axially inextensible. 

As far as the isolation system is concerned, the base 
isolation system diaphragm is assumed to be infinitely rigid in 
its own plane, the seismic isolation devices are considered 
rigid in the vertical direction, and torque resistance of 
individual bearing is neglected. The base isolation system can 
include linear and nonlinear isolation elements. 

A global coordinate system, denoted with upper case letters 
X, Y, and Z, is attached to the mass center of the base isolation 
system. Because of this structural idealization, the total 
number of DOFs of the 3D structural model of a base-isolated 
structure is equal to 3n + 3. The i-th floor diaphragm has three 
DOFs defined at the diaphragm reference point io , which is 

vertically aligned to the global coordinate system origin O. 
The DOFs for the i-th floor are the translation ixu  along the X-

axis, the translation iyu  along the Y-axis, and the rotation iu  

about the vertical axis Z; ixu  and iyu  are defined relative to 

the ground. The 3n superstructure DOFs are listed in the 
displacement vector su , whereas the three DOFs of the base 

isolation system are in the displacement vector bu . The i-th 

diaphragm mass is lumped in its mass center )( iCM  which is 

also the geometric center.  
The equations of motion for the elastic superstructure are 

expressed in the following form: 
 

gssbbssssss        urmukucukucum    (1) 

 
with 
 

 T     0cc 1  (2) 
 

 T     0kk 1  (3) 
 

where sm  is the superstructure mass matrix, sc  the 

superstructure damping matrix, sk  the superstructure stiffness 

matrix, and sr  the superstructure earthquake influence matrix. 

Furthermore, su , su , and su  represent the floor displacement, 

velocity, and acceleration vectors relative to the ground, 
respectively, gu  the ground acceleration vector, 1c  and 1k  

the viscous damping and stiffness matrices of the 
superstructure first story. 

The equations of motion for the base are: 
 

,    )( )( bb1b1bb gns
T

bs
T

bb urmfukukkucuccum         (4) 

 

where bm  is the base isolation system mass matrix, bc  is the 

damping matrix of linear viscous isolation elements, bk  is the 

stiffness matrix of linear elastic isolation elements, and nf  is 

the resultant nonlinear forces vector of nonlinear elements. 
Furthermore, bu , bu , and bu  represent the base isolation 

system displacement, velocity, and acceleration vectors 
relative to the ground, respectively, and br  the base isolation 

system influence matrix. 
Combining (1) and (4), the following system of 3n + 3 

ordinary differential equations of the second order in time, 
coupled in terms of elastic and viscous forces and decoupled 
in terms of inertial forces, is obtained: 
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This system is nonlinear because of the presence of the 

resultant nonlinear forces vector nf  of the base isolation 
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system. 

III. PROPOSED MIXED TIME INTEGRATION METHOD 

In the following, the MEIM proposed by [2] is described. 
The explicit time integration method adopted to predict the 
nonlinear response of the base isolation system is the second 
order central difference method, whereas the implicit time 
integration method employed to compute the linear response 
of the superstructure is the second order Newmark's constant 
average acceleration method, also called trapezoidal rule. 
Thus, in each time step of a nonlinear time history analysis, 
the proposed method allows first the solution of the base 
isolation system response, then these results are used for the 
evaluation of the superstructure response. As it will be shown, 
the proposed algorithm does not require the use of an iterative 
procedure within each time step of a nonlinear time history 
analysis. 

A. Evaluation of the Base Isolation System Response 

Writing the set of three equations of motion of the base 
isolation system at time t gives: 
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Assuming constant time steps and substituting the central 

difference expressions for velocity and acceleration vectors at 
time t into (6) gives: 
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from which )( Δttb u  can be evaluated. 

In (9), )( Δttb u , )(tbu , )(tsu , and )(tsu  are assumed 

known from implementation of the procedure for the 
preceding time steps. In order to calculate the solution at time 
Δt , a special starting procedure must be used. Since )0(bu , 

)0(bu , and )0(bu  are known at time t = 0, )( Δtb u  can be 

obtained using the following relation [9]:   
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B. Evaluation of the Superstructure Response 

Writing the set of 3n dynamic equilibrium equations of the 
superstructure at time Δtt   gives: 
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Substitution of the trapezoidal rule expressions for the 

superstructure velocity and acceleration vectors at time Δtt   
into (11) gives: 
 

)(ˆ)(ˆ ΔttΔtt sss  puk , (12) 
 
where  
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In order to solve for )( Δtts u , first the base isolation 

system velocity vector at time Δtt   has to be evaluated. This 
vector can be computed in terms of displacement vectors using 
the three-point backward difference approximation [10]:  

 

 )()(3)(4
2

1
)( Δtt  Δtt   t  

Δt
Δtt bbbb  uuuu . (15) 

IV. STABILITY ANALYSIS 

The proposed MEIM is conditionally stable because the 
central difference method is adopted to compute the nonlinear 
response of the base isolation system. In this section, a 
procedure to evaluate the critical time step is first developed 
for 2D base-isolated structures and then extended to the 3D 
case. 

Considering the 2D discrete structural model of a base-
isolated structure having only linear isolation elements and 
neglecting the superstructure and base isolation system 
viscous damping, (6) becomes: 

 

)()()()()( 111 tu mtu ktu kktu m gbbbbb   . (16) 

 
Since the stability of an integration method can be 

determined by examining the behavior of the numerical 
solution for arbitrary initial conditions, it is possible to 
consider the integration of (16) for 0)( tug :  

 

0)()()()( 111  tu ktu kktu m bbbb  . (17) 
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Dividing (17) by bm , and expressing the displacement of 

the superstructure first floor in terms of bu , i.e. bb u uu 1

, where the parameter   is generally much smaller than 1, 
(17) becomes: 
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After substituting the central difference expression for the 

acceleration at time t, (18) can be reformulated into a recursive 
matrix form as follows: 
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where A  is the integration approximation operator given by: 
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In this work, the numerical stability is analyzed by using the 

spectral decomposition of the matrix A . Since the stability of 
an integration method depends only on the eigenvalues of the 
approximation operator A , the following eigenvalue problem 
has to be solved: 

 
vvA     . (21) 

 
The eigenvalues of the matrix A  are the roots of the 

following characteristic polynomial: 
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Thus, the two eigenvalues of A  are: 
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For stability, the absolute values of 1  and 2  have to be 

smaller than or equal to 1, that is, the spectral radius )( A  of 

the approximation operator A , defined as i 
,i
 max 

21
)(


A , 

must satisfy the condition 1)( A . It follows from this 

condition that the critical time step crt  is given by: 
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The same time step stability limit is also applicable when 

the viscous damping is not neglected [9]. 
It is important to observe that the highest horizontal 

stiffness of each seismic isolator has to be used in order to 
evaluate crt  and that   can be assumed equal to zero. 

Considering the 3D discrete structural model of a 
seismically base-isolated structure, the critical time step crt  

can be evaluated considering the lowest natural period given 
by the following eigenvalue problem: 

 
2 ΩΦmΦk   b

h
b  , (27) 
 

where h
bk  is the stiffness matrix of the base isolation system 

assembled using the highest horizontal stiffness of each 
nonlinear element. 

V. NUMERICAL INVESTIGATION 

In the following, the nonlinear dynamic response of a 3D 
base-isolated structure with a FPB system subjected to 
bidirectional earthquake excitation is predicted using the 
proposed MEIM. The main aim of the numerical application is 
to investigate the stability and the computational efficiency of 
the MEIM when adopted for the nonlinear dynamic analysis of 
base-isolated structures having seismic isolators with very 
high initial stiffness values, such as FPBs, for which the 
critical time step could become smaller than the one used to 
define accurately the earthquake excitation. The numerical 
results are compared to those obtained using a conventional 
monolithic solution approach, i.e. the implicit unconditionally 
stable Newmark’s constant acceleration method used in 
conjunction with the iterative pseudo-force procedure. For 
brevity, in this paper, the latter solution algorithm proposed by 
[8] specifically for the analysis of base-isolated structures, is 
referred to as the Pseudo-Force Method (PFM). 

A. Analyzed 3D Base-Isolated Structure 

The superstructure is a four-story reinforced concrete 
structure with plan dimensions 19 m x 11 m, and story height 
h = 3.5 m. The weight of the superstructure is 9921.24 kN, 
and the first three natural periods are 0.33 s, 0.33 s, and 0.26 s, 
respectively. Each superstructure diaphragm mass includes the 
contributions of the dead load and live load on the floor 
diaphragm and the contributions of the structural elements and 
of the nonstructural elements between floors. 

The base isolation system, having a total weight of 3006.44 
kN, consists of an orthogonal mesh of foundation beams 
having rectangular cross section with dimensions 60 cm x 75 
cm, and 24 identical FPBs, positioned centrically under all 
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columns. 
As a result of the kinematic constraints assumed in Section 

II, the total number of DOFs, defined relative to the ground, is 
equal to 15. The typical floor plan and a section of the 
analyzed 3D base-isolated structure are shown in Fig. 2. 

 

 

(a) 
 

 

(b) 

Fig. 2 Four-story reinforced concrete base-isolated structure (a) 
typical floor plan (b) section A-A’ 

 
The base isolation system has been designed in order to 

provide an effective isolation period effT  = 2.50 s and an 

effective viscous damping eff  = 0.10 at the design 

displacement dd  = 0.50 m. Each bearing has a radius of 

curvature of the spherical concave surface R = 1.55 m, and a 
sliding friction coefficient   = 0.06.  

B. Model Adopted for Friction Pendulum Bearings (FPBs) 

The dynamic behavior of each FPB is simulated by using a 
mathematical model, introduced by [8], capable of predicting 
the biaxial behavior of both elastomeric and sliding bearings. 
According to this model, the FPB nonlinear restoring forces 
along the orthogonal directions X and Y are described by the 
following equations: 
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in which N is the vertical load carried by the bearing, R is the 
radius of curvature of the spherical concave surface of the 
bearing,   is the sliding friction coefficient, xz  and yz  are 

dimensionless variables governed by the following system of 
two coupled first order ordinary nonlinear differential 
equations proposed by [11]: 
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in which A ,  , and   are dimensionless quantities that 

control the shape of the hysteresis loop, y is the yield 
displacement, xu  and yu  are the velocities that occur at the 

isolation device in X and Y directions, respectively. 
In this work, the bearing normal force N is assumed equal to 

the weight W acting on each isolator, the dependency of the 
sliding friction coefficient on bearing pressure and sliding 
velocity is neglected, and the yield displacement y is assumed 
equal to 0.0001 m. Furthermore, the unconditionally stable 
semi-implicit Runge-Kutta method [12] is employed to solve 
the differential equations governing the behavior of each 
nonlinear isolation element with a number of steps equal to 50. 

C. Numerical Results 

Bidirectional earthquake excitation is imposed with 
component SN and SP of the 1989 Loma Prieta motion 
applied along directions X and Y, respectively. The ground 
acceleration record time step is 0.005 s. It is important to 
observe that normally 200 points per second are used to define 
accurately an acceleration record [13].  

Table I gives the Nonlinear Time History Analyses 
(NLTHAs) results obtained using the PFM and the proposed 
MEIM, both implemented on the same computer (Intel® 
Core™ i7-4700MQ processor, CPU at 2.40 GHz with 16 GB 
of RAM) by using the computer program MATLAB. In the 
PFM, the adopted convergence tolerance value is equal to 

610 . 
The comparison of the maximum and minimum values of 

the bMC  displacements and 4MC  accelerations in X and Y 

directions, obtained using the PFM and MEIM, reveals that 
the proposed method provides numerical results that are close 
enough to those obtained adopting the PFM. 

As regards the stability of the MEIM, the critical time step 

crt , evaluated considering the lowest natural period given by 

the eigenvalue problem in (27), is equal to 0.012 s. It is 
evident that, in this case, being the critical time step larger 
than the imposed ground acceleration time step, there are no 
stability problems despite of the very high initial stiffness 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:11, No:2, 2017

212

 

 

value of FPBs. 
 

TABLE I 
NLTHAS RESULTS WITH t  = 0.005 S 

   )( bMC
xu  [m] )( bMC

yu  [m] )4(MC
xu  [g] )4(MC

yu  [g] 

 tct [s] tctp max min max min max min max min 

PFM 1425 - 0.564 -0.457 0.297 -0.183 1.178 -1.119 0.600 -0.729 

MEIM 99.8 7.0% 0.564 -0.457 0.297 -0.183 1.137 -1.056 0.558 -0.743 

 
TABLE II 

NLTHAS RESULTS WITH t  = 0.001 S 

   )( bMC
xu  [m] )( bMC

yu  [m] )4(MC
xu  [g] )4(MC

yu  [g] 

 tct [s] tctp max min max min max min max min 

MEIM 490.59 34.4% 0.559 -0.446 0.295 -0.181 0.879 -0.957 0.544 -0.654 

 
As far as the computational efficiency is concerned, the 

total computational time, tct, required by the MEIM is 
significantly reduced in comparison to the PFM. It must be 
noted that the comparisons using the tct are meaningful only 
qualitatively because it depends on the CPU speed, memory 
capability, and background processes of the computer used to 
obtain the previous results. To this end, in order to normalize 
the computational time results, Table I also shows the 
percentage of the MEIM tct evaluated with respect to the PFM 
tct as: 

 

  100
PFM

MEIM
MEIM 

tct 

tct 
% tctp . (31) 

 
In addition, according to the numerical results listed in 

Table II, the proposed MEIM, performed with a smaller time 
step, that is, t  = 0.001 s, requires less computational effort 
than the PFM even if the latter is performed using the larger 
time step (i.e., t  = 0.005 s). Indeed, the MEIM tctp, referred 
to the PFM tct evaluated adopting t  = 0.005 s, is equal to 
34.42 %. 

It can therefore be concluded that even when a time step 
smaller than the one used to define the ground acceleration 
accurately has to be adopted because of stability requirements, 
as in the case of base isolation systems having isolators with 
very high initial stiffness, such as sliding bearings, the 
proposed method preserves its computational efficiency with 
respect to the widely used PFM. 

Figs. 3 and 4 illustrate, respectively, the displacement time 
history of the bMC  and the acceleration time history of the 

4MC . It is evident the good agreement between responses 

computed using the PFM and the proposed MEIM. 

VI. CONCLUSIONS 

A MEIM, proposed by [2] to perform the nonlinear time 
history analysis of seismically base-isolated structures, has 
been presented. Adopting the explicit central difference 
method to compute the nonlinear response of the base 
isolation system and the implicit Newmark’s constant average 
acceleration method to evaluate the superstructure linear 
response, the proposed solution algorithm allows to avoid the 

use of an iterative procedure for each time step of a nonlinear 
dynamic analysis. 

 

 

(a) 
 

 

(b) 

Fig. 3 Displacement time history of the base isolation system mass 
center in (a) X and (b) Y directions 

 
Since the MEIM is conditionally stable because of the use 
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of the central difference method, a procedure to evaluate the 
critical time step has been developed first for 2D base-isolated 
structures and then extended to the 3D case. 

 

 

(a) 
 

 

(b) 

Fig. 4 Acceleration time history of the superstructure fourth story 
mass center in (a) X and (b) Y directions 

 
In order to investigate the stability and the computational 

efficiency of the proposed MEIM when adopted to analyze 
base-isolated structures having seismic isolators with very 
high initial stiffness values, such as sliding bearings, for which 
the critical time step could become smaller than the one used 
to define accurately the earthquake excitation, the seismic 
response of a 3D base-isolated structure with a FPB system 
has been predicted using the proposed MEIM. The numerical 
results have been compared to those obtained adopting the 
widely used PFM. From the numerical results presented in the 
paper, the following conclusions can be drawn: 
1) The proposed MEIM provides results that are close 

enough to those obtained adopting the PFM; 
2) Despite the very high initial stiffness of FPBs, in the 

proposed numerical example, the MEIM does not have 

stability problems being the critical time step larger than 
the imposed ground acceleration one; 

3) The tct required by the MEIM is significantly reduced in 
comparison to the PFM: the MEIM tctp evaluated with 
respect to the PFM tct for t  = 0.005 s is equal to 7 %. In 
addition, the MEIM, performed with a smaller time step 
(i.e., t  = 0.001 s), requires less computational effort 
than the PFM even if the latter is performed using the 
larger time step (i.e., t  = 0.005 s): indeed, the MEIM 
tctp, referred to the PFM tct evaluated adopting t  = 
0.005 s, is equal to 34.42 %. It transpires that even when a 
smaller time step has to be used to avoid stability 
problems, the proposed solution algorithm preserves its 
computational efficiency. 
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