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Abstract—Saccharomyces cerevisiae (baker’s yeast) can exhibit 

sustained oscillations during the operation in a continuous bioreactor 
that adversely affects its stability and productivity. Because of 
heterogeneous nature of cell populations, the cell population balance 
models can be used to capture the dynamic behavior of such cultures. 
In this paper an unstructured, segregated model is used which is 
based on population balance equation(PBE) and then in order to 
simulation, the 4th order Rung-Kutta is used for time dimension and 
three methods, finite difference, orthogonal collocation on finite 
elements and Galerkin finite element are used for discretization of the 
cell mass domain. The results indicate that the orthogonal collocation 
on finite element not only is able to predict the oscillating behavior of 
the cell culture but also needs much little time for calculations. 
Therefore this method is preferred in comparison with other methods. 
In the next step two controllers, a globally linearizing control (GLC) 
and a conventional proportional-integral (PI) controller are designed 
for controlling the total cell mass per unit volume, and performances 
of these controllers are compared through simulation. The results 
show that although the PI controller has simpler structure, the GLC 
has better performance. 
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I. INTRODUCTION 
ACCHAROMYCES cerevisiae (baker’s yeast) is one of 
the important industrial microorganisms which are used in 

the brewing, food manufacturing and genetic engineering 
industries. Under moderate operating conditions, continuous 
bioreactors producing Saccharomyces cerevisiae may exhibit 
sustained oscillations. In most situations, the oscillations 
adversely affect bioreactor operability. So the underlying 
cellular mechanisms that cause oscillatory yeast dynamics are 
still controversial and current topic of study. Understanding 
and controlling this dynamic behavior would lead to 
significant advances in yeast production processes. Three 
types of autonomous oscillations have been reported in 
literature [1, 2, 3]: cell cycle dependent oscillations, glycolytic 
oscillations and short-period sustained oscillations. Only the 
cell cycle dependent oscillations are considered in this paper. 
These oscillations are also known to be strongly associated 
with the cell cycle synchronization of the yeast population [3, 
4].  
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Also oscillations are reported to appear at intermediate 
dissolved oxygen levels [4, 5]. The periods of oscillation 
varies from 2 to 45 hr depending on the particular strain and 
operating conditions [4, 6, 7]. 

Major research efforts have been focused on the 
characterization of interacellular metabolisms, extracellular  
media, cell cycle and the interaction of cells with the 
environment. Depending on these various aspects, a variety of 
dynamic models have been proposed [3, 8-13]. However no 
single reported model has been considered satisfactory in 
addressing all of the complex dynamics that are 
experimentally observed. 

Physically, a yeast culture is comprised of a population of 
individual cells with different physiological and biochemical 
properties and an extracellular media with a number of 
different components. Fredrickson introduced the term 
“segregated”, to indicate explicit accounting for the presence 
of the heterogeneous individuals in the cell population, and the 
term “structured” to designate the accounting for the various 
intracellular and extracellular chemical components. A 
number of transient models have been proposed to explain the 
sustained oscillations observed in continuous cultures of 
baker’s yeast. These models can be classified into three 
categories: structured and unsegregated models; unstructured 
and segregated models; and structured and segregated models. 
As unstructured and unsegregated models are over-simplistic 
and cannot predict the oscillating behavior, they are not 
considered in the classification. Unsegregated models are 
based on the simplifying assumption that individual cells have 
identical physical and chemical properties while segregated 
models account for differences between individual cells in 
terms of properties such as cell mass or cell age. Unstructured 
models have no chemical structure imposed on the biophase 
i.e. these models are based on the assumption that detailed 
modeling of intracellular behavior is not essential to describe 
cell growth. By contrast, structured models account for 
various chemical components and their interactions within the 
cell. Therefore structured and unsegregated models consider 
the biophase as a continuous and well-mixed phase and 
account for the chemical structure of that [8]. It means that 
oscillatory dynamics produced by structured, unsegregated 
models are a direct result of cell metabolism incorporated into 
the model. For example Jones and Kompala have proposed a 
structured, unsegregated model to describe the growth 
dynamics of S. cerevisiae in both batch and continuous 
cultures [9]. The model is derived using the cybernetic 
modeling framework first proposed by Ramkrishna et al [14]. 
In cybernetic model, oscillations arise from competition 
between three pathways: glucose fermentation, glucose 
oxidation and ethanol oxidation. All three metabolic pathways 
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have been assumed available for the cell mass growth; 
however, the metabolic pathway with the highest growth rate 
dominates the growth. This model is able to produce sustained 
oscillations over a wide range of operating conditions. Despite 
this ability, the cybernetic model has a few major drawbacks. 
First of all, as the model does not account for the segregated 
nature of cell culture, it can not describe the observed cell 
cycle synchrony which is believed to play a critical role in the 
stabilization of the oscillations [1, 5, 15]. Instead, it views the 
oscillations as a mere result of competitions among metabolic 
pathways. This explanation is questionable because it is based 
on the unexplained coincidences that the period of the 
oscillations matches the characteristic time of the cell cycle 
and also predicts quick elimination and regeneration of 
metabolic oscillations in response to the changes in operating 
conditions such as dilution and agitation rates. Although the 
dynamic competition between the three metabolic pathways is 
indeed the causative factor for the oscillations, these 
predictions are not in accordance with experimental results. In 
contrast, structured and segregated models [10, 16, 17] attempt 
to explore the very details of the cell culture. Cells are 
differentiated individually and oscillations are viewed as a 
result of cell population dynamics rather than cell metabolism. 
The model is comprised of a set of cell mass distribution 
balances combined with a metabolic model that accounts for 
the basic variables. It is capable of predicting sustained 
oscillations with periods comparable to those observed 
experimentally. However, the model solution is quite 
laborious. Because some model parameters do not have clear 
physical meaning and can not be determined from 
experimental measurements. The complexity also makes the 
model not well suited for practical control applications. 
Unstructured and segregated models can be viewed as 
simplifications of the structured and segregated models by 
ignoring either the intracellular and extracellular chemical 
structures. Individual cells can be identified by a single 
variable such as cell age or cell mass. The key feature of these 
models is a population balance equation (PBE) that explains 
the time evolution of the cell age or cell mass distribution, 
combined with mass balance equations of other variables. 
Although these models cannot capture the interplay between 
cell metabolism and oscillatory dynamics due to their 
unstructured nature, they are able to predict the cell cycle 
synchrony well [18, 19, 20]. 

This paper is organized as follows. First, the mathematical 
model of bioreactor is described. Next, the numerical methods 
that are used for discretizing the model are described and 
compared through simulation studies. Finally, two control 
algorithm, a nonlinear controller based on feedback 
linearization (globally linearizing control) and a conventional 
proportional-integral (PI) controller are used for controlling 
the bioreactor and performances of these controllers are 
compared through simulation. 

II. MODEL FORMULATION 
The model couples the PBE for the cell mass distribution to 

the substrate mass balance. The simplified cell cycle from 
which the PBE model is derived is shown in Fig. 1. The PBE 
is written as [19, 20]: 
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Where: m is the cell mass; ),( tmW  is the number density of 

cells with mass m at time t; )(SK ′ is the single cell growth 
rate; S′ is the effective substrate concentration; ),( mmP ′  is 
the newborn cell probability function; ),( SmΓ ′ is the 
division intensity function; and D is the dilution rate. 

The division intensity function ),( SmΓ ′ models the 
tendency of budding cells to divide as they approach a certain 
critical mass. It has the form [19]: 
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Where 
*
tm  is the transition mass, m0 is the additional mass 

that mother cells must gain before division is possible, ε  and 
γ are constant parameters and *

dm  is the mass at which the 
division intensity reaches its maximum value γ . The 
parameter ε determines how rapidly the division rate 
increases as the cell mass approaches *

dm . 

The newborn cell probability function ),( mmP ′  describes 
the mass distribution of newborn cells resulting from cell 
division. This function is chosen as [19]: 
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Where m is the mass of the newborn cell, m′  is the mass of 
the budding mother cell, and A and β are constant parameters. 
This function must satisfy: 
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Mother 
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Fig. 1 Simplified cell cycle model for budding yeast 
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The probability function produces two identical Gaussian 
peaks in the cell number distribution,one centered at the 
transition mass *

tm ( corresponding to mother cells) and one 
centered at *

tmm −′ (corresponding to newborn daughter cells). 
It has been found that the functions used to model the 
substrate dependence of the transition mass ( *

tm ) and the 
division mass ( *

dm ) play important roles in the ability of the 
model to exhibit stable periodic solutions. Therefore, the 
following functions have been proposed by Zhu et al. [19] for 
the transition and division masses: 
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Where tdthl KmmSS ,,,, 00 and Kd are constant parameters. 
The substrate balance is written as [19]: 
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Where S is the actual substrate concentration, S ′  is the 
effective substrate concentration, fS  is the feed substrate 
concentration and Y is a constant yield coefficient. It can be 
assumed that the single cell growth rate follows the simple 
Monod kinetics: 

SK
SμSK

m

m

′+
′

=′)(      (8) 

Where mμ  and Km are constant parameters. The filtered 
(effective) substrate concentration is computed as: 
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The constant parameter α  determines how fast cells respond 
to environmental changes. 

The parameters values of the bioreactor model (Eqs 1-9) are 
given in Table I. In addition, the initial cell distribution is 
assumed to be as below: 
 

112132626 ])106(105exp[10)0,( −−− ⋅⋅×−×−⋅= LgcellsmmW  
                                                                               (10) 

 
 
 
 

TABLE I  
THE PARAMETERS VALUES OF THE CELL POPULATION BALANCE MODEL [19] 

Parameter Value Parameter Value 
γ 200 ε 2−g 26105× 

A 131025 ×π λ 2−g
2610100× 

Sl 0.1    g/l Sh 2   g/l 

Kt lg
g

.1001.0 13−× Kd lg
g

.101 13−× 

    

mt0 g13106 −× md0 g131011 −× 

mmax g131012 −× m0 g13101 −× 

Y 0.4 mμ hg /105 12−× 

Km 25  g/l α 20 
D 0.4 h-1 Sf 25 g/l 

III. NUMERICAL SOLUTION 
The PBE model is comprised of a coupled set of nonlinear 

algebraic, ordinary differential and integro-partial differential 
equations. Analytical solution is possible under very 
restrictive assumptions [21, 22]. Therefore, numerical solution 
is required when the PBE model is utilized in open-loop and 
closed-loop simulations. A variety of numerical solution 
techniques based on finite difference, weighted residual and 
orthogonal collocation methods can be applied to such PBE 
models [23-26]. In this paper three numerical methods: finite 
difference; orthogonal collocation on finite elements; and 
Galerkin finite element, are used for solving the bioreactor 
model equations. In all simulations, a finite cell mass domain, 

max0 mm ≤≤  , is chosen in such a way that the number of cells 
with mass maxmm >  is negligible. The implementation 
algorithms of these numerical methods are mentioned in many 
textbooks such as Finleysen 1980 [27]. 

A.  Finite Difference Method 
In this method, the finite mass domain is divided into n 

equal space grids. Then the cell population balance equation 
(Eq. 1) is discretized for each grid and a set of nonlinear 
ordinary differential equations is obtained for all grids. The 
backward difference approximation is used for mass 
dimension derivative due to definite boundary conditions at 
the first point ( 0),0( =tW ), and the 1/3 Simpson’s rule 
approximation is used for the integral term [27]. It is important 
to note that to respect the Simpson’s rule, the number of 
divisions must be even. The concluding set of nonlinear ODEs 
are: 
 

∑
−

=

−

=+−+++

−′−=

1

1
1,2,....,)()()

3
(

))((1
d

d

n

i
jjj,nj,iij,o

1jj
j

njWΓDUUaUh

WWSK
ht

W
   (11) 

iiijij WΓPU ,, 2=                                                             (12)                   



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:3, No:3, 2009

130

Fig. 3 Open loop transient response of substrate concentration 
using finite difference method. n=120, No oscillatory conditions 

(line), oscillatory conditions (dash line)
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)( jj mWW =  denotes the cell number density at division point 

j. The coefficient ai = 2 for even i and ai = 4 for odd i. h is the 
step size of each division. ),(, ijij mmPP = is the ),( ij  element 

of the matrix nnRP ×∈ , and )( ii mΓΓ = is the ith element of 

the vector nRΓ ∈ . Both P and Γ varying with time as they 
depend on S′ . 

The set of derived ordinary differential equations (Eqs 11, 
13 and 14) is solved, using 4th order Rung-Kutta with variable 
step size method (MATLAB 7.0 – ode45). 

 

 

 
 

The open loop responses of total cell number per unit 
volume and substrate concentration are shown in Figs. 2 and 3 
with 120 number of division and for two cases, oscillatory 
( 125.0 −= hD , lgS f /20= )and no oscillatory 

( 14.0 −= hD , lgS f /25= ) conditions [19].  
As can be seen from the results, the model can not predict 

the oscillatory behavior if the finite difference method is used. 
Even by increasing the number of mass domain divisions to 
400, oscillation not observed. 

B.  Orthogonal Collocation on Finite Elements 
In this method, the finite mass domain is discretized into 

some elements which may have various step sizes, but due to 
avoiding complex calculations, these sizes are assumed to be 
identical. The number of elements is shown by NE. When the 
solution has steep gradient form it is better to use the different 
trial functions on each element to approximate solutions. In 
order to achieve this propose, orthogonal collocation is applied 
to each element by computing the residuals at each collocation 
point in the elements [27]. These internal collocation points 
are determined as the roots of appropriate Jaccobi polynomial 
and their number is shown by NCOL. Therefore the total 
number of collocation points on the domain is: 
 

nNCOLNENENENCOL =++=++× 1)1(1         (15) 
             

After using the above procedure, the following set of ordinary 
differential equations is developed: 
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Where nnA × is the collocation matrix [27] and h is the step 

size of each element. Wj, Pj,i and jΓ  are the same as before. 
Integral expressions are approximated using Gaussian 
quadrature [27]. We use 12 equally spaced finite elements, 
each with 8 internal collocation points (the total number of 
collocation points is 109) [19]. The resulting set of ordinary 
differential equations is solved by ode45. The open loop 
responses of total cell number per unit volume and substrate 
concentration are shown in Figs. 4 and 5 for two cases, 
oscillatory ( 125.0 −= hD , lgS f /20= ) and no oscillatory 

( 14.0 −= hD , lgS f /25= ) conditions. As can be seen from the 
results, by using the above numerical method, the model 
predicts the oscillatory responses. Theses oscillatory responses 
have period comparable with reported experimental 
observations [28]. 
 

Fig. 2 Open loop transient response of total cell number using 
finite difference method. n=120, No oscillatory conditions (line), 

oscillatory conditions (dash line)
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C.  Galerkin Finite Element 
This method is similar to orthogonal collocation on finite 

elements with a difference that the Galerkin method is used on 
each element of mass domain instead of collocation. Of 
course, it is possible to apply the same trial function (Jacobbi 
polynomial) but it is common to use the lower order functions 
(linear or quadratic) [27]. Therefore, linear basic functions are 
used for discretizing the cell population balance equation. To 
approximate the integral terms in Eqs (1) and (7), the 1/3 
Simpson’s rule is applied. After applying the above method, 
the following set of ordinary differential equations was 
obtained: 
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Where ijA , is the Galerkin matrix [27] and n is the number of 
elements obtained by discretizing the mass domain. 

For solving the above set of differential equations, again 
ode45 is used. To obtain an accurate solution, the simulation 
has been performed several times with different number of 
mass elements. The number of mass elements greater than 200 
does not have significant effects on resulting responses. The 
open loop responses of total cell number per unit volume and 
substrate concentration are shown in Figs. 6 and 7 with 200 
number of elements and for two cases, oscillatory 
( 125.0 −= hD , lgS f /20= ) and no oscillatory 

( 14.0 −= hD , lgS f /25= ) conditions. These solutions show 
that the model is able to predict the oscillatory dynamics if the 
Galerkin finite element method is used. 

The results of this section show that the finite difference 
method has drawback in prediction of oscillatory responses 
and even by increasing the number of mass domain division to 
400, no oscillation was observed. Other methods, i.e. 
orthogonal collocation on finite elements and Galerkin finite 
element, are able to predict the oscillatory behaviors. The 
Galerkin finite element method is simpler than the orthogonal 
collocation but orthogonal collocation is more convergent than 
Galerkin. For example, Orthogonal collocation on finite 
elements gets an accurate solution by 109 collocation points 
on mass domain however Galerkin finite element needs at 
least 200 division on mass domain to reach this accuracy and 
it means that the number of calculations is more and the time 
duration is longer. Therefore the orthogonal collocation on 
finite element is recommended for solving the PBE models of 
the yeast culture in continuous bioreactors. Figure 8 shows the 
cell number distribution as a function of cell mass and time for 
the oscillatory conditions using orthogonal collocation on 
finite elements method. 

 

Fig. 4 Open loop transient response of total cell number using 
Orthogonal collocation on finite elements method. n=109, No 
oscillatory conditions (line), oscillatory conditions (dash line)

Fig. 5 Open loop transient response of substrate using Orthogonal 
collocation on finite elements method. n=109, No oscillatory 

conditions (line), oscillatory conditions (dash line)
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Fig. 6 Open loop transient response of total cell number using 

Galerkin finite element method. n=200, No oscillatory conditions 
(line), oscillatory conditions (dash line) 

 
Fig. 7 Open loop transient response of substrate concentration using 

Galerkin finite element method. n=200, No oscillatory conditions 
(line), oscillatory conditions (dash line) 

 
Fig. 8 Cell number distribution using orthogonal collocation on finite   

elements method 

 

IV. CONTROL 
Control objectives for oscillating yeast cultures can include 

the attenuation or the stabilization of the limit cycles. 
Obviously the attenuation of the undesirable oscillations leads 
to improve bioreactor operability under normal conditions. 
Oscillation stabilization may be desirable in certain situations; 
e.g. to increase the production of key metabolites produced 
preferentially during a part of the cell cycle. Linear and 
nonlinear control of oscillating yeast cultures based on model 
predictive controllers is investigated by many authors [17, 19, 
28, 29, 30]. In this paper the oscillation attenuation problem 
will be investigated based on feedback linearization. 

The cell population model contains two variables that may 
serve as manipulated variables: the dilution rate (D) and the 
feed substrate concentration (Sf). The total cell number 
concentration (m0) and the substrate concentration (S) are 
considered as candidate controlled outputs. Therefore there are 
a total of four candidate input/output pairings for SISO 
nonlinear controller design (D/m0, D/S, Sf/m0, Sf/S). Among 
them, the Sf/m0 pair is not used in the controller design. 
Because that pair has the relative degree of three and the 
resulted nonlinear controller has complex structure and can 
not be implemented easily. 

In what follows, at first, the globally linearizing control 
(GLC) algorithm is described briefly. Then, for each pairing, a 
GLC was designed and the performances of them are 
compared through simulations. Finally, a conventional PI 
controller is designed for D/m0 pair and its performance was 
compared with GLC. In all simulations a discrete form of 
controllers with 0.05 hr sampling time was used. 

A. GLC Method 
The GLC method is a nonlinear control algorithm based on 

differential geometric approach. The first step in the GLC 
synthesis is the calculation of a state feedback, under which 
the closed loop input/output system is exactly linear. Then for 
linearized system, a controller with integral action such as PI 
can be designed. 

To implement the state feedback of the GLC, all the process 
state variables should be measured or estimated. Open loop or 
closed loop observers such as extended Kalman filter can be 
used for estimation of unmeasured state variables [31]. 
Consider SISO processes with the following model: 
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with a finite relative order r (the relative order is the smallest 
integer for which 0)(1 ≠− xhLL r

fg ). Here x is the vector of 
state variables, u and y are the manipulated input and the 
controlled output, respectively. Under the state feedback: 
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where iβ 's are tunable parameters, the closed loop v-y 
behavior is linear and described by the following equation: 
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Some guidelines for tuning of β i's parameters and other 
remarks for using GLC method are described by Soroush and 
Kravaris [32]. 

B.  Control based on D/S Pair 
For the D/S pair, the control law of the GLC is synthesized 

directly from the substrate equation (which has the relative 
order one): 
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Therefore, the control law has the following form: 
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 It is necessary to know that the integral term in the above 
equations (26, 27) represents the total number of cells per unit 
volume ( ∫

∞
=

00 d),( mtmWm ). A PI controller can be used to 

generate the input of linearized system (v) as given below: 
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Where S* is the desired profile of substrate concentration in 
the bioreactor. Kc and Iτ are gain and integral time constant of 
PI controller, respectively. 

The resulting control algorithm (GLC), have three 
parameters  β , Kc and Iτ  that must be tuned. These 
parameters are tuned with trial and error. The resulted values 
are: Kc=1, β =1hr and β =1hr. In implementation of the 
above algorithm, the substrate concentration can be measured 
on-line, but the total cell number per unit volume can not be 
measured on-line. Therefore, in all simulation, an open loop 
observer is used for estimation of m0. The responses of m0 and 
S are shown in Figs. 9 and 10 for two cases: a) the D/S pair 
loop is open (Sf=20 g/l , D=0.25 hr-1), and b) after 5 hours, the 
D/S pair loop is closed (Sf=20 g/l , S*=0.8 g/l ). As can be seen 
from the results, although the oscillation in the substrate 
concentration is damped, the oscillation in the total cell 
number is not damped, and therefore the D/S pair control is 
not suitable for the attenuation of oscillation. 

C.  Control based on Sf/S Pair 
In this case, the control law of GLC method which is 

synthesized directly from the substrate equation has the 
following form: 

 
 
 
 
 
 

 
Fig. 9 Transient response of total cell number per unit volume. D/S 
pair loop is open (dash line), D/S pair loop is closed using a GLC 

(line) 

 
Fig. 10 Transient response of substrate concentration. D/S pair loop is 

open (dash line), D/S pair loop is closed using a GLC (line) 
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In the same as before, the input of linearized model (v) can 

be generated by a PI controller (Eq 28). In addition, the same 
values as before are assumed for the GLC parameters (Kc=1, 

Iτ  =1hr and β =1hr). The responses of m0 and S are shown 
in Figs. 11 and 12 for two cases: a) the Sf/S pair loop is open 
(Sf=20 g/l , D=0.25 hr-1), and b) after 5 hours, the Sf/S pair 
loop is closed (D=0.25 hr-1, S*=0.8 g/l ). As can be seen from 
the results, although the oscillation in the substrate 
concentration is damped, the oscillation in the total cell 
number is not damped, and therefore in the same as D/S pair, 
the Sf/S pair control is not suitable for the attenuation of 
oscillation. 
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Fig. 11 Transient response of total cell number per unit volume. 

Sf /S pair loop is open (dash line), Sf /S pair loop is closed 
using a GLC (line) 

 

 
 

Fig. 12 Transient response of substrate concentration. Sf /S pair loop 
is open (dash line), Sf /S pair loop is closed using a GLC (line) 

 

D.  Control based on D/m0 Pair 
By integrating the equation (1) with respect to m, the 

differential equation describing the evolution of the total cell 
number per unit volume is easily derived as below: 
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Therefore, the control law of the GLC has the following form: 
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The input of the linearized system (v) can be generated by a PI 
controller as below: 

∫ −+−+=
t *

I
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Where *
0m  is the desired profile of the total cell number per 

unit volume. The same values as before are assumed for the 
GLC parameters (Kc=1, Iτ =1hr and β =1hr).  

The responses of m0 and S are shown in Figs. 13 and 14 for    
two cases: a) the D/m0 pair loop is open (Sf=20 g/l , D=0.25 
hr-1), and b) after 5 hours, the D/m0 pair loop is closed (Sf=20 
g/l , m0

*= 1.3*1013 cells/l ). As can be seen from the results, 
the GLC controller based on D/m0 pair not only is able to 
control the total cell number per unit volume but also damp 
the oscillation in the substrate concentration. Therefore the 
D/m0 pair control is suitable for the attenuation of oscillation. 
To distinguish the abilities and disabilities of the proposed 
nonlinear controller (GLC), a conventional PI controller is 
used for D/m0 pair. The parameters of this PI controller are 
tuned with trail and error and have the following values:  Kc= 
-1.5 hr -1, Iτ =1hr. It is necessary to note that, a scaled value 
of error is used for input of the PI controller (error = [m0

* - m0] 
/ m0

*). The closed loop response of m0 and D are shown in 
Figs. 15 and 16 for GLC and PI controller. In these figures, the 
controller is turn on after 5 hours and a step change in setpoint 
is applied after 35 hours (desired value of m0 is changed from 
1.3*1013 to 1*1013 cells/l). As can be seen from the results, the 
proposed GLC method has much better performances than 
conventional PI controller. 

It is necessary to note that, the total cell number per unit 
volume is unobservable from substrate concentration 
measurements. Therefore, as mentioned before, an open loop 
observer is used in implementation of GLC method. With 
respect to this fact, the performance of GLC method will 
decrease with increasing the model mismatch. 
 

 
Fig. 13 Transient response of total cell number per unit volume. D/m0 

pair loop is open (dash line), D/m0 pair loop is closed using a GLC 
(line) 
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Fig. 14 Transient response of substrate concentration. D/m0 pair loop 

is open (dash line), D/m0 pair loop is closed using a GLC (line) 
 

 
Fig. 15 Closed loop response of total cell number per unit volume, 

GLC method (dash line), PI controller (line) 
 

 
Fig. 16 Closed loop response of dilution rate, GLC method (dash 

line), PI method (line) 
 
 
 
 

V. CONCLUSION 
In this paper, the numerical solution of a cell population 

balance model which proposed for a continuous bioreactor, 
and nonlinear control of the simulated model have been 
investigated. This investigation is performed when the stable 
oscillation exist in the continuous yeast culture. 

The numerical solution has two steps. In the first step, the 
cell population balance equation is discretized over the finite 
cell mass domain by using three numerical methods of finite 
difference, orthogonal collocation on finite elements and 
Galerkin finite element. Then the resulted set of ordinary 
differential equations is solved numerically by 4th order Runge 
Kutta (ode45 of MATLAB 7.0) over the time domain. The 
results show that the finite difference method has drawback in 
prediction of oscillatory responses and even by increasing the 
number of mass domain division to 400, no oscillation was 
observed. Orthogonal collocation on finite elements and 
Galerkin finite element are able to predict the oscillatory 
behaviors. The Galerkin finite element method is simpler than 
the orthogonal collocation but orthogonal collocation is more 
convergent than Galerkin. For example, Orthogonal 
collocation on finite elements gets an accurate solution by 109 
collocation points on mass domain however Galerkin finite 
element needs at least 200 division on mass domain to reach 
this accuracy and it means that the number of calculations is 
more and the time duration is longer. Therefore the orthogonal 
collocation on finite element is recommended for solving the 
PBE models of the yeast culture in continuous bioreactors. 

Three nonlinear controllers with GLC structure are 
designed for controlling the D/S, Sf/S and D/m0 pairs. The 
results show that the oscillation behavior of the total cell 
number per unit volume can not be damped by controlling the 
D/S or Sf/S pairs. But the GLC controller based on D/m0 pair 
not only is able to control the total cell number per unit 
volume but also damp the oscillation in the substrate 
concentration. Therefore the D/m0 pair control is 
recommended for the attenuation of oscillation. Finally the 
performance of GLC is compared with a conventional PI for 
controlling the D/m0 pair. The results show that although the 
PI controller has simpler structure, the GLC controller has 
better performance. It is necessary to note that, the total cell 
number per unit volume is unobservable from substrate 
concentration measurements. Therefore, an open loop 
observer is used in implementation of GLC method. With 
respect to this fact, the performance of GLC method will 
decrease with increasing the model mismatch. 
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