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Abstract—Noninvasive diagnostics of diseases via breath 

analysis has attracted considerable scientific and clinical interest for 
many years and become more and more promising with the rapid 
advancements in nanotechnology and biotechnology. The volatile 
organic compounds (VOCs) in exhaled breath, which are mainly 
blood borne, particularly provide highly valuable information about 
individuals’ physiological and pathophysiological conditions. 
Additionally, breath analysis is noninvasive, real-time, painless, and 
agreeable to patients. We have developed a wireless sensor array 
based on single-stranded DNA (ssDNA)-functionalized single-walled 
carbon nanotubes (SWNT) for the detection of a number of 
physiological indicators in breath. Seven DNA sequences were used 
to functionalize SWNT sensors to detect trace amount of methanol, 
benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, 
which are indicators of heavy smoking, excessive drinking, and 
diseases such as lung cancer, breast cancer, and diabetes. Our test 
results indicated that DNA functionalized SWNT sensors exhibit 
great selectivity, sensitivity, and repeatability; and different 
molecules can be distinguished through pattern recognition enabled 
by this sensor array. Furthermore, the experimental sensing results 
are consistent with the Molecular Dynamics simulated ssDNA-
molecular target interaction rankings. Thus, the DNA-SWNT sensor 
array has great potential to be applied in chemical or biomolecular 
detection for the noninvasive diagnostics of diseases and personal 
health monitoring. 

 
Keywords—Breath analysis, DNA-SWNT sensor array, 

diagnosis, noninvasive. 

I. INTRODUCTION 

REATH provides insights into the physiological and 
pathophysiological processes in patients’ bodies, e.g. the 

sweet smell of acetone accompanies diabetes [1]-[3]. Breath 
analysis, as a diagnostic technique, is non-invasive, painless, 
agreeable to patients, achievable in real time, and can even 
provide information beyond conventional analysis of blood 
and urine [4], [5]. Many different analytical techniques were 
used to analyze exhaled breath, such as gas chromatography 
and mass spectrometry (GC and MS) [6], [7]. However, they 
require standard laboratory setting, significant processing 
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time, expensive instrumentation, and highly trained 
professionals. Consequently, it cannot be used for individual 
health monitoring at home or during daily activities. Our goal 
is to develop a portable, accurate, easy to use, real-time, and 
cost effective device for breath analysis. 

SWNTs, with their specific electrical, mechanical, 
chemical, and thermal properties, are widely utilized in 
chemical/biological sensors [8] or as agents for drug delivery 
[9], [10]. However, a major disadvantage of SWNT sensors is 
the lack of sensing specificity. To solve this problem, an 
effective scheme to functionalize the SWNT sensors is 
required to enable them to specifically respond to a variety of 
molecular targets. Modification of SWNTs with polymers 
[11]-[13] and biomolecular complexes [14]-[16] has shown 
great enhancement in its specificity and sensitivity. Among 
these molecules, DNA can nonspecifically bind to the 
sidewalls of SWNTs through hydrophobic interactions, π-π 
bonding [17], and possibly amino-affinity. A system that 
consists of SWNTs decorated with a self-assembled 
monolayer of ssDNA has integrated the selective odorant 
interactions of ssDNA [18] with the sensitivity of SWNTs to 
the changes in its surface electronic environment when 
exposed to analytes [19]. Moreover, the response of these 
devices to a particular molecule of interest can always be 
optimized by changing the base sequence of the ssDNA. As a 
result, functionalization of SWNTs with DNA has 
demonstrated attractive prospects in various fields including 
the detection of molecular targets, solubilization in aqueous 
media, the nucleic acid sensing, and probing biomolecular 
interactions [15], [20]-[22]. Furthermore, a number of 
different ssDNA-functionalized SWNT sensors can be 
integrated into a wireless sensor array on one micro device to 
detect/distinguish different targets or biomarkers 
simultaneously [23]-[25]. An array-based sensing approach is 
enormously efficient in real-time, highly sensitive and fast 
detection due to its high selectivity, good sensitivity, great 
repeatability and excellent precision. 

Exhaled breath consists of oxygen, nitrogen, carbon 
dioxide, water, inert gases and trace amounts of more than 200 
different VOCs. In order to recognize certain molecules in 
breath, a sensor array of different DNA-decorated SWNT 
sensors is required and pattern recognition method is preferred 
to distinguish different chemicals. 
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Three separate nanosensors decorated with the same DNA 
sequence were used to detect each chemical. The resistance 
changes after exposure to the chemical vapors for 10 minutes 
were recorded (Fig. 3). 
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Fig. 3 Resistance changes of DNA 24A, DNA 24Aa, DNA 24G, 

DNA 24GT, DNA 24T, DNA 24Ma, and DNA 24C-functionalized 
SWNT nanosensors when exposed to methanol, benzene, dimethyl 

sulfide, hydrogen sulfide, acetone and ethanol vapors. Error bars = ± 
standard deviation and n = 3 

 
Methanol, acetone, and ethanol are polar molecules and 

hydrophilic. Benzene is a nonpolar organic molecule with very 
limited solubility in water (hydrophobic). Hydrogen sulfide 
and dimethyl sulfide are polar molecules but hydrophobic. The 
reaction between these targeted molecules and DNA-SWNT 
sensor is highly sequence dependent, thus, different molecules 
can be distinguished through pattern recognition enabled by 
this sensor array, for example, acetone (line in Fig. 3). For 
acetone, a hydrophilic polar molecule, the pattern of response 
was similar to methanol’s, but the resistance changes were 
much smaller resulting from a lower polarity and weaker 
hydrophilic property due to the carbonyl group (C=O) and two 
methyl groups. DNA decorated nanosensors barely responded 
to benzene and dimethyl sulfide. It is because benzene and 
dimethyl sulfide are hydrophobic molecules which do not tend 
to adsorb on the DNA decorated SWNTs. For hydrogen 
sulfide, the response pattern was different from all the others. 
The resistance of SWNT sensor functionalized with DNA 
24GT decreased significantly when exposed to hydrogen 
sulfide. However, the resistances of the other nanosensors all 
slightly increased when exposed to hydrogen sulfide. It is very 
likely that the interaction between nucleobases G and/or T 
with free thiol group (-SH) is much stronger than that of 
nucleobase A and C. It can be due to the highly polarizable 
divalent sulfur centers in hydrogen sulfide. This unique 
response of the DNA 24GT decorated SWNT sensor to 
hydrogen sulfide can be used to differentiate it from other 
vapors. The sensing results of acetone and ethanol, especially 
by the DNA 24A, DNA 24G, DNA 24C and DNA 24T, are in 
great agreement with the Molecular Dynamics simulated 
results elsewhere [31]. Study of the concentration and 

temperature effects is in progress and will better demonstrate 
our sensor array’s high selectivity and sensitivity. 

IV. CONCLUSION 

We have developed a wireless nanosensor array based on 
ssDNA functionalized SWNTs on a micro device. The DNA 
functionalized SWNT sensors presented reversible and 
repeatable changes in response to different vapors. The 
experimental sensing results are also consistent with the 
Molecular Dynamics simulated ssDNA-molecular target 
interaction rankings indicating the reliability of computational 
simulation on DNA sequence selection. The nanosensor array, 
decorated with seven different DNA sequences, was tested 
with six vapors indicating individuals’ physiological and 
pathophysiological conditions. DNA increased the affinity of 
SWNTs to hydrophilic molecules due to the surface properties 
of SWNTs being altered from hydrophobic to hydrophilic by 
the DNA decoration. In addition, DNA 24GT decorated 
SWNT sensor exhibited a different behavior (decrease in its 
resistance) compared to other types of SWNT sensors when 
exposed to hydrogen sulfide. Measuring responses from seven 
different DNA functionalized SWNT sensors simultaneously 
and analyzing the response pattern will allow one to 
selectively detect various molecular targets. This array-based 
sensing approach provides high selectivity, good sensitivity, 
and great repeatability for breath analysis. Using bottom-up 
computational approaches, like Molecular Dynamics 
simulation, and applying DNA as a tunable biomaterial, this 
DNA array technology would enable highly sensitive breath 
analysis for non-invasive disease diagnostics and personal 
health monitoring. 
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