
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

121

Abstract—In order to accelerate the similarity search in high-

dimensional database, we propose a new hierarchical indexing
method. It is composed of offline and online phases. Our contribution
concerns both phases. In the offline phase, after gathering the whole
of the data in clusters and constructing a hierarchical index, the main
originality of our contribution consists to develop a method to
construct bounding forms of clusters to avoid overlapping. For the
online phase, our idea improves considerably performances of
similarity search. However, for this second phase, we have also
developed an adapted search algorithm.

Our method baptized NOHIS (Non-Overlapping Hierarchical
Index Structure) use the Principal Direction Divisive Partitioning
(PDDP) as algorithm of clustering. The principle of the PDDP is to
divide data recursively into two sub-clusters; division is done by
using the hyper-plane orthogonal to the principal direction derived
from the covariance matrix and passing through the centroid of the
cluster to divide. Data of each two sub-clusters obtained are including
by a minimum bounding rectangle (MBR). The two MBRs are
directed according to the principal direction. Consequently, the non-
overlapping between the two forms is assured.

Experiments use databases containing image descriptors. Results
show that the proposed method outperforms sequential scan and SR-
tree in processing k-nearest neighbors.

Keywords—K-Nearest Neighbor Search, Multidimensional
Indexing, Multimedia Databases, Similarity Search.

I. INTRODUCTION

content-based image retrieval system (CBIR) offers the
possibility to manage totally a large images collection.

Indeed, it must be able to make an update, to describe the
images automatically, and must also allow an example search
based on the visual similarity, in other words, to find for an
image given in an example images considered similar. To
implement such a system, two fields, to which the system
appeals, are made complementary. They are the image
processing (automatic description of the images) and the data
bases.

Image processing is the automatic description of the images;
it consists of extracting from an image its visual properties
(form, color, texture…). These properties are represented as

Manuscript received December 31, 2007.
M. Taileb is with the Department of Computer Science, University of

Paris-Sud, Orsay 91405 France (e-mail: mounira.taileb@u-psud.fr).
S. Lamrous, is with SeT Laboratory, University of Technology of Belfort

Montbeliard, Belfort, 90010 France (e-mail: sid.lamrous@utbm.fr).
S. Touati was with DRT Laboratory in the CEA/SACLAY France. He

is now with the Company Aviasys R&D, Evry, 91000 France (e-mail:
sami.touati@aviasys.com).

multidimensional vectors called descriptors [1]. To find the
images similar to an image query, a similarity search
(example: nearest neighbors) is made for each descriptor of
the image query. Considering that several similarity searches
are carried out: as many searches as descriptors characterizing
the image query. Using data structure to index the descriptors
base proves to be essential. Several index structures were
proposed, and the high-dimensional index structures are
adapted to descriptors with large dimension. The objective of
proposed high-dimensional indexes is to structure descriptors
data base with an aim of accelerating the search process.

Obtaining a high-dimensional index can be made by using
traditional techniques of indexing such as R-tree [2], or by
using a clustering algorithm to form clusters or groups of
descriptors, and the clusters are supported by a hierarchical
structure, as an example BIRCH use CF-tree [3], DBSCAN
use R*-tree [4] and X-tree [5]. Many high-dimensional index
structures have been proposed, the most known and used are
data-partitioning based index structure such as SS-tree [6],
SR-tree [7], X-tree, considered as extensions of R-tree, and
space-partitioning based index structure such as k-d-B-tree
[8], hB-tree [9], and LSDh-tree [10] derived from kd-tree [11].
The R-tree-based index structures suffer from overlapping
between bounding regions and the low fanouts, these influence
negatively on the results of query processing. The kd-tree-
based index structures drawbacks are essentially the no
guarantee of using allocated space; this led to the consultation
of few populated or empty clusters.

Taking into account drawbacks cited above, and with an
aim to accelerate nearest neighbors search, we propose a new
high-dimensional index technique called NOHIS. It is
composed of two phases:

- The first offline phase consists in gathering descriptors in
clusters; the clustering algorithm used is the Principal
Direction Divisive Partitioning (PDDP) [12]. It’s one of the
divisive hierarchical clustering algorithms; it divides data
recursively into two sub-clusters by using the hyper-plane
orthogonal to the principal direction derived from the
covariance matrix and passing through the centroid of the
cluster to divide. A binary not balanced tree is obtained at the
end of the clustering process. Our contribution consists in
using minimum bounding rectangle (MBR) avoiding overlap,
MBRs are directed according to the principal direction
(principal component) used in the clustering algorithm to
divide a cluster into two sub-clusters. We call NOHIS-tree, the
tree obtained by using PDDP, in which we use non-
overlapping rectangles.

Non-Overlapping Hierarchical Index Structure
for Similarity Search

Mounira Taileb, Sid Lamrous, and Sami Touati

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

122

- The second online phase is the step during witch the
interrogation of the obtained index is made by a nearest
neighbors search carried out on the NOHIS-tree. We propose a
search algorithm adapted to the used MBRs.

The rest of the paper is organized as follows: in section II
we present our proposed hierarchical indexing method by
detailing its two phases. Section III presents experiments when
comparing our proposed method with sequential scan, PDDP-
tree and SR-tree. We have chosed SR-tree for several reasons,
it is a multidimensional index proposed recently which still
attracts the attention [13], and for the availability of its source
code. Finally, section IV concludes the paper.

II. THE NOHIS METHODS

The proposed high-dimensional index can be divided in two
groups according to the partitioning strategy, the data-
partitioning and the space-partitioning based index structure.
When the nearest neighbors search is applied on a data-
partitioning index, additional clusters are visited due to the
overlapping between the MBRs. In the case of the space-
partitioning; consultation of few populated or empty clusters is
extremely probable.

By using NOHIS, the overlapping is avoided and the quality
of clusters is preserved. This can be explained by the
following facts:

1- The clustering algorithm forms clusters by using data
dispersion, by guaranteeing the possibility to avoid empty and
few populated clusters by fixing a minimal threshold for the
cluster size (number of vectors contained in the node).

2- The direction of the two MBRs according to the principal
direction ensures that there is no overlapping between them.
Before detailing the suggested method, we indicate by data the
totality of multidimensional descriptors.

A. Offline phase

The phase offline of the suggested method can be
represented in three principal stages:

1 - Data constituting the initial cluster is divided into two
sub-clusters using the hierarchical clustering algorithm
PDDP [12]. Division is made by the hyper-plane orthogonal to
the first principal component passing through the centroid of
the cluster to divide. The principal component corresponds to
the first principal direction carried by the first eigenvector of
the matrix COV given by (1) associated to its largest
eigenvalue.

M(n x m) represents the matrix of data to be clustered, m is
the size of data, n their dimension and w the centroid of data
given by (2):

COV = (M-weT)(M-weT)T (1)

1 2 1
. .mv v v

w M e
m m

+ + += =�
(2)

e = (1,1,…., 1) T

The most important dispersion of the data is according to
this component, so dividing accordingly it allows to have
dense clusters.

2- Data of each obtained sub-clusters is gathered by
bounding form. The bounding forms of both clusters do not
overlap because overlapping degrades considerably the
performances of the similar search.

3- Hyper-rectangles are the bounding forms used; they are
directed according to the first principal component considered.
The direction of the bounding forms according to the first
principal component ensures the non-overlapping between the
two forms.

A.1. Data Partition

Figure 1 illustrates the example of data partition, in 2D, into
two clusters. The whole of the vectors of data constitutes the
matrix M (figure 1.a). Let us consider the matrix of covariance
of M, note by U the first principal component. Data is divides
into two parts which are included in two rectangles having as
axis the line engendered by U. the two rectangles should not
overlap. Division is made with the separating plan (hyper-
plane starting from 3D) passing by the center of data w and
perpendicular to the first principal component (figure 1.b).
Data is divided recursively into two parts PR and PL (R for
right and L left) according to the following rule:

() () 0T
i i i Rg x U x w x P= − ≥ � ∈

() () 0T
i i i Lg x U x w x P= − < � ∈

xi is a multidimensional vector from the considered data.

y First
Principal

component

w

x
(a)e1

Separating
hyper-plane

y

x

w

U

(b)e1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

123

Fig. 1 Example, in 2D, of data clustering and the use of the
Minimum Bounding Rectangles in direction of the first principal

component

Let us note MR and ML the two corresponding matrices of
the two parts. Clustering algorithm [14] is given in figure 2
below.

Fig. 2 PDDP Algorithm

A.2. The change of reference mark

The figure 1.c represents the case of use of MBRs in the
origin reference mark; in which the coordinates of the vectors
are expressed. It is clear that having MBRs in this way creates
an overlapping, and consequently, in a nearest neighbors
search, additional clusters will be consulted without improving
the results. As solution, to avoid the overlapping, we propose

to direct MBRs according to the first principal component
(figure 1.d). In this case, a change of reference mark is
essential.

Let B={e1,e2,…,en} be the canonical base of Rn,
e1=(1,0,0...,0), e2=(0,1,0...,0), e2=(0,0,1...,0), ….

The goal is to build an orthonormal base B’={u1,u2,…,un}
where a vector is equal to U (e.g. u1 = U), a such base can be
obtained by transforming B by an orthogonal isomorphism, for
example by an orthogonal symmetry S. We must have
B'=(S(e1),S(e2),….,S(en)) and in particular S(e1)= u1=U.

let (3)

and H be the hyper-plane orthogonal to V, H=V�, so that H be
the mediator hyper-plane of e1 and U.
We define S as the orthogonal symmetry with respect to H.

The image of the vector x by S is: S(x) = x – 2<x,V>.V,
where <x,V> is the scalar product of x and V.

In particular, we have: ui = ei – 2<ei,V>.V 1�i�n

With this definition of S when has, in fact, u1=S(u1)= U.

In fact: u1 = e1 - 2�< e1,,U-e1>.(U-e1)

With:

1 1 1 1
1

2
(, 1)()

2 (1 ,)
u e e U U e

e U
= − − −

−

1 1 1 1
1

1
(, 1)()

(, 1)
u e e U U e

e U
= + − −

−

u1 = e1 + (U-e1) = U

A.3. MBR’s construction

Let be NR(resp. NL) the matrix containing vectors of PR

(resp. PL) in the base B’.

We have: NR = MR - 2.VT.V. MR = (I - 2VT.V). MR (4)

NL = ML - 2.VT.V. ML = (I - 2VT.V). ML (5)

Vectors of NR (resp. NL) are included in a MBR RR (resp.
RL). A property of the MBR is that each of his face passes by a
vector at least. MBRs are characterized by vectors S and T,
where:

SR = min (NR) (resp. SL = min (NL)) and
TR = max (NR) (resp. TL = max (NL))

Note that the minimum and the maximum of this formula
are taken line by line, so that S=(s1,..,si,...sn) et T=(t1,..,ti,...tn)
where si (resp. ti) is the minimum (resp. the maximum) of the
ith component of the considered vectors.

1

1

()

|| ||

U e
V

U e

−=
−

0. Start with the matrix of vectors M(n x m), and
a desired number of clusters cmax.

1. Initialize Binary tree with a single Root node
2. For c = 2,3,…., cmax do
3. Select node C with largest Scatter Value
4. Create L & R : = left & right children of C
5. For i = 1 to Csize

Compute g(xi), if g(xi) � 0 assign xi to L
else assign it to R

6. Result: A binary tree with cmax leaf nodes
forming a partitioning of the entire data set

w

x
(c)e1

2 2 2

1 1 1

2 2

1

1 1

U + e - 2 e , U

1
1

2 (1 e , U)

U e

U e

α

α

= =
−

= = � =
−

x

w

(d)e1

U

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

124

In an internal node (not a leaf) of the NOHIS-tree, following
informations are stored: SR, TR, SL, TL and the common vector
V given by (3). A leaf node contains vectors, it is called data
node. Leaves represent the obtained clusters.

B. On-line phase

As a result from the off-line phase, a not balanced binary
tree is obtained. Let’s called father, a cluster having two sub-
clusters obtaining after division (for example, the nodes N1,
N2, N3 in figure 3), and child, a sub-cluster. Leaves are the
data nodes which contain the vectors. For a query vector q,
before searching its nearest neighbors, coordinates in the new
reference mark (i.e. the new base B’) must be calculated, in
order to calculate the distance to the MBR. The computing of
new coordinates is done in each level in the NOHIS-tree until
a leaf node. The passage of the q from a father node to its
child requires the computing of its new coordinates because a
change of the reference mark has occurred. Two children of
the same father have a common reference mark.

B’ is orthonormal, so coordinates of q in B’ (q’) are given
by the products scalar:

<q,ui> = <q,ei> - 2<ei,V>.<q,V>

q' = [<q,u1>,<q,u2>,…..,<q,un>]T

q' = q – 2<q,V>V (6)

Distance separating q from a rectangle R is calculated as
given in [15] using q’, S and T. MINDIST is the distance
between the query vector and an MBR,

2

1

(',) '
n

i i
i

MINDIST q R q r
=

= −� (7)

with:

'

'

'

i i i

i i i i

i

s if q s

r t if q t

q else

<�
�= >�
�
�

when q’ is in R, MINDIST(q’,R) = 0.

B.1. Search algorithm

Nearest neighbor search improves clustering efficiency. In
algorithm 1, we present our k-nearest neighbors search (k-NN)
adapted to the obtained NOHIS-tree. We note that NOHIS-tree
support also a range query search. For a vector query q, the k
nearest vectors must be returned. list_Neighbors (LN) is the
table containing k-nearest neighbors. For each nearest vector,
LN must contain: its indice in the database, the indice of the
cluster to which it belongs, and its distance from q. Distances
of the returned nearest neighbors are initialized in the infinite
value. Returned LN is sorted according to the distances. This
algorithm is recursive; the first call is done with the root of the
NOHIS-tree and a distance called maxDist initialized at 0. If
the node is not a leaf then, first q' is calculated by (6) and then
distances MINDIST given by (7) are computed between q' and
the two children’s MBRs of the node. A first recursive call in
the algorithm 1 can be made with the child node having
smallest distance MINDIST, let M[j] be this smallest distance.
We attribute to M[j] the maximum between M[j] itself and
maxDist. The condition of this recursive call is that M[j] must
be lower than the biggest distance contained in LN
(LN.dist[k]). A second call can be made with the second child
if the same condition is satisfied. Else if the considered node is
a leaf, Euclidian distances between q’ and all the vectors of
the node are calculated. Only vectors having a distance lower
than LN.dist[k] are inserted by sorting in LN.

Algorithm 1 : K-NN Search

1. Begin
2. If the node is a leaf
3. For i : = 1 to node.size
4. Compute distance between vectQuestion and

node.vect[i], let be dist;
5. if (dist < list_Neighbors.dist[k])
6. Insertion of current vector in list_Neighbors by

sorting
7. end if
8. end For
9. Else
10. For j : = 1 to 2 (the two node’s chikdren)
11. Compute coordinates of vectQuestion in the new

reference mark, let be vectQuestion’
12. M[j] = MINDIST (vectQuestion’, MBR of node.child j);
13. end For
14. Take the child node having the smallest distance M[j];
15. M[j] = max (maxDist, M[j])
16. if (M[j] < list_Neighbors.dist[k])
17. Recursive call of K-NN Search passing the child node

and M[j] as maxDist
18. end if
19. let MS the MINDIST of the second child
20. MS = max(maxDist, MS)
21. if (MS <list_Neighbors.dist[k])
22. Recursive call of K-NN Search with the second child

and MS as maxDist
23. end if
24. end Else
25. End

Internal node

Leaf node

R(N1) = R(N2, N3)

N1

N2 N3

N4 N5

R(N2) = R(N4, N5)
Level 0

Level 1

Level 2

Fig. 3 Example of NOHIS-tree

Level 2

Level 3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

125

The condition of the recursive call in algorithm 1
(M[j] < LN.dist[k]) is necessary because distances of vectors
included in a MBR from a query vector can be only higher or
equal to M[j], and as LN is sorted in the ascending order,
therefore LN.dist[k] is the biggest distance contained in LN,
and consequently if M[j] is not lower than LN.dist[k], the
MBR can not contains closer vectors to the query vector that
those already found.

In a hierarchical index the bounding forms of a level are
contained in that of the inferior level. Taking the example of a
node father, the bounding forms of its children are contained
in its bounding form and consequently, the distance from a
query vector to the node father is lower or equal to its
distances to the children. This gives a property to the
hierarchical index that the distance of a query vector q to the
bounding forms increases from a level to that highest.

In our index structure NOHIS-tree, bounding rectangles of
children (R1, R2) are not included completely in the bounding
rectangle of their node father R, as shown in the figure 3.

The instruction M[j] = max (maxDist, M[j]) in the line 15 of
algorithm 1, (resp. MS = max (maxDist, MS) in the line 20),
preserve the property that the distance increases from a level
to that highest in the search tree. M[j] expresses the distance to
their intersection.

Fig. 4 Example of children’s MBRs

III. EXPERIMENTS

Clustering algorithm and the search algorithm are
implemented in C++. Algorithms run on a PC with Intel
processor, its CPU is 1.7 GHz and 512 Mo of RAM. To
evaluate performances of similarity search on our proposed
index we performed various experiments. We use a database
containing 1,193,647 vectors of dimension 30. Vectors are
local descriptors based on points of interest derived from
4,996 images. In the first and second experiment, during the
search process index and data of considered methods are
loaded completely in main memory. In the third experience,
the index and data of NOHIS-tree and SR-tree are stored on
the disk and loaded in main memory when necessary.

In experiment 1, 6 databases of size 50,000 and different
dimensions (25 to 150) are used and three search methods are
considered, sequential scan and k-NN search carried out the
PDDP-tree and NOHIS-tree. Sequential scan remains
competitive in high dimensional spaces. The PDDP-tree is
obtained when applying PDDP clustering algorithm and using
MBRs oriented according the original reference mark with
overlap as shown in Fig.1.c. 200 query vectors are randomly
selected from data bases. In this experience and the two
following we take for NOHIS-tree and PDDP-tree the good
number of clusters which gives the best performance of
search. We create for each base multiple partitions that differ
by the number of clusters; we take the partition having the
number of clusters that minimizes the search time as shown in
the column “number of clusters” in tables I, II and III.

The experiment consider the cumulated response time for
searching in databases 20 nearest neighbors (NNs) of the 200
query vectors. The goal is to study the impact of the
dimensionality on the three search methods. Fig. 5 shows the
total search time for three search methods. The search time
increase with growing dimension, the NOHIS-tree
significantly outperforms the PDDP-tree and sequential scan.
In 25-dimensional space, the NOHIS-tree performs the queries
9.91 times faster than the PDDP-tree and 16.785 times faster
than the sequential scan. Even in 150-dimension space, the
NOHIS-tree performs the queries 4.593 times faster than the
PDDP-tree and 6.336 times faster than the sequential scan.
NOHIS-tree keeps its performances even in high dimensional
space, when performances of other index structure decrease in
high dimensional space when comparing to the sequential
scan.

TABLE I
EXP. 1 IMPACT OF DATA DIMENSIONALITY ON THE SEARCH PERFORMANCE

Total search time (s)Dimension Number of
clusters NOHIS-tree PDDP-tree Seq. scan

25 600 0,210 2,083 3,525
40 600 1,151 4,977 5,037
80 600 1,261 7,551 8,882
100 700 1,853 9,414 10,866
150 600 2,494 11,456 15,802

x

R1

R2

R

d1d2

0

2

4

6

8

10

12

14

16

18

25 40 80 100 150

Dimension

R
es

p
o

n
se

ti
m

e
(s

)

NOHIS-tree

PDDP-tree

Seq. scan

Fig. 5 Exp. 1 Response time, 20 NNs for 200 query vectors, increasing
dimension

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

126

In the second experiment we evaluated the performance
behavior while varying the database size. We measured total
search time and the consulted leaves when using the same
search methods applied on 5 bases of dimensionality 25 and
different sizes (50,000 to 500,000), these databases have been
generated from the database of 1,193,647 descriptors. Time in
fig. 6.a represents the cumulated response time when
searching in databases 20 NNs of each of the 200 query
vectors. We can observe that NOHIS-tree gives the best times,
the speed-up of NOHIS-tree in the total search time is ranges
between 9.91 and 18.06 over PDDP-tree, and between 16.785
and 39.642 over the sequential scan. In fig. 6.b we show
results of another comparison which is the number of the
consulted leaves, we consider the mean of the leaves consulted
when processing queries since leaves are the data nodes
(clusters). This comparison explains the rapidity of the
NOHIS-tree and shows the number of the consulted leaves for
our proposed index which is fewer than the number of
consulted leaves of the other compared methods. The speed-up
with respect to the number of the consulted leaves in NOHIS-
tree is ranges between 13.437 and 20.336 over PDDP-tree, and
ranges between 29.440 and 69.148 over the sequential scan.
The orientation of MBRs in NOHIS-tree avoiding overlapping
explains the obtained results.

TABLE II
EXP. 2.A IMPACT OF DATA SIZE ON THE SEARCH TIME

TABLE III
EXP. 2 .B LEAVES ACCESSED WHEN COMPARING NOHIS-TREE WITH PDDP-

TREE AND SEQ.SCAN

Number of consulted leaves (clusters)Number of
vectors

Number of
clusters NOHIS-tree PDDP-tree Seq. scan

50.000 600 20,380 273,850 600
100.000 1200 24,655 529,900 1200
250.000 2000 37,215 937,255 2000
350.000 2400 41,335 1081,835 2400
500.000 3000 43,385 882,295 3000

TABLE IV
EXP. 3 COMPARISON OF OUR PROPOSED INDEX WITH SR-TREE

In the experiment 3, we compare the NOHIS-tree and the
SR-tree, this index was chosen because it is considered one of
popular and recent used index. We used the code version 2.0
of SR-tree provided by the authors, we retained the default
parameters; SR-tree is build dynamically. In this experiment,
the index and data of NOHIS-tree and SR-tree are stored on
the disk and loaded in main memory when necessary. We use
databases of dimension 30 and varying form 50,000 to
1,193,647 vectors. For the both indexes, we search 20 NNs for
200 query vectors, as in the previous experiments.
Fig. 7 shows the total search time, NOHIS-tree outperforms
SR-tree; it is 5.660 times faster than SR-tree when using the
database of 50,000 and 4.840 times faster than the SR-tree
when using the database of 1,193,647 vectors.

Total search time (s)Number of
vectors

Number of
clusters NOHIS-tree PDDP-tree Seq. scan

50.000 600 0,210 2,083 3,525
100.000 1200 0,280 4,356 7,040
250.000 2000 0,621 11,216 17,616
350.000 2400 0,791 14,201 24,676
500.000 3000 0,892 14,792 35,361

Total search time (s)Number of
vectors NOHIS-tree SR-tree
50000 0,621 3,515

100000 0,781 5,097
500000 2,202 11,396
1193647 6,399 30,974

0

500

1000

1500

2000

2500

3000

3500

50.000 100.000 250.000 350.000 500.000

Base

C
o

n
su

lt
ed

L
ea

ve
s

NOHIS-tree

PDDP-tree

Seq-scan

Fig. 6.b Exp. 2 Leaves accessed, 20 NNs for 200 query vectors, increasing
size

0

5

10

15

20

25

30

35

40

50000 100000 250000 350000 500000

Base

R
es

p
o

n
se

ti
m

e
(s

)

NOHIS-tree

PDDP-tree

Seq-scan

Fig. 6.a Exp. 2 Response time, 20 NNs for 200 query vectors, increasing

size

0

5

10

15

20

25

30

35

50000 100000 500000 1193647

Ba se

R
es

p
o

n
se

ti
m

e
(s

)

NOHIS-tree

SR-tree

Fig. 7 Exp. 3 Total search time depending on the databases size

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

127

Through the experiments, we conclude that NOHIS-tree
outperforms PDDP-tree and sequential scan in CPU time and
the number of the consulted leaves; it also outperforms the
competitive index SR-tree in CPU time.

IV. CONCLUSION

A new hierarchical indexing method for high dimensional
data was proposed in this paper, called NOHIS. The proposed
multidimensional index avoiding the overlapping between
including forms of clusters presents the principal originality of
our contribution. We also introduced the k-nearest neighbors
search adapted to the proposed index NOHIS-tree.

The experimental results are conclusive on the corpus of
bases chosen, and thus allow to validate the proposed index.

We compared the NOHIS-tree with sequential scan, PDDP-
tree and the SR-tree. The NOHIS-tree improves all.

We plan to test consequent bases to measure the
performances more, to compare the NOHIS-tree with other
index and include outliers detection during clustering.

REFERENCES

[1] C. Faloutsos, “Searching Multimedia Databases by Content”. Kluwer
Academic Publishers, 1996.

[2] A. Guttman. “R-trees: A dynamic index structure for spatial searching”.
In Proceedings of the ACM SIGMOD International Conference on
Management of data, Boston, Masachussets, USA, pages 47-57. 1984.

[3] T. Zhang, R. Ramakrishnan, M. Linvy, “Birch: An efficient data
clustering method for very large databases”. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Montreal,
Canada, pp.103-114, 1996.

[4] N. Beckman, H.P.Kriegel, R. Schneider, & B. Seeger, (1990). “The R*-
tree: An efficient and robust access method for points and rectangles”. In
Proceeding of the ACM SIGMOD International Conference on
Management of Data, Atlantic City, New Jersey, USA, pp. 322-331,
1990.

[5] S. Bertchold, D.A. Keim, H.P. Kriegel, “The X-tree: An index structure
for hight-dimentional data”. In Proceeding of the 22nd Internatioanl
Conference on Very Large Data Bases, Mumbai (Bombay), India, pp.
28-39, 1996.

[6] D.A. White and R. Jain, “Similarity Indexing with the SS-Tree”. In
Proceeding of the 12th Int’l Conf Data Eng., pp. 516-523, 1996.

[7] N. Katayama, S. Satoh. “The SR-tree : An index structure for high-
dimensional nearest neighbor queries”. In Proceeding of the ACM
SIGMOD, International Conference on Management of Data, Tuscon,
Arizona, USA, pages 369-380. 1997.

[8] J.T. Robinson, “The k-d-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 10-18, Apr. 1981.

[9] D.B. Lomet and B. Salzberg, “The hB-Tree: A Multiattribute Indexing
Method with Good Guaranteed Performance,” ACM Trans. Database
Systems, vol. 15, no. 4, pp. 625-658, 1990.

[10] A. Henrich, “The LSDh-Tree: An Access Structure for Feature Vectors”.
Proc. 14th Int’l Conf. Data Eng., pp. 362-369, 1998.

[11] [kd-Tree] J. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509- 517,
1975.

[12] D. L. Boley, “Principal Direction Divisive Partitioning”, Data Mining
and Knowledge Discovery 2(4):325-344, 1998.

[13] N. Bouteldja, V. Gouet-Brunet et M. Scholl. “Evaluation of strategies
for multiple sphere queries with local image descriptors”. In IS&T/SPIE
Conference on Multimedia Content Analysis, Management, and
Retrieval, San Jose CA, USA, 2006.

[14] S. Savaresi, D. L. Boley, S. Bittanti, G. Gazzaniga. “Choosing the
cluster to split in bisecting divisive clustering algorithms”. CSE Report
TR-00-055, University of Minnesota, 2000.

[15] N. Roussopoulos, S. Kelly, F. Vincent. “Nearest Neighbor Queries”. In
Proceeding of ACM SIGMOD, May 1995.

