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 
Abstract—In this paper, the dynamic modeling of a single-link 

flexible beam with a tip mass is given by using Hamilton's principle. 
The link has been rotational and translational motion and it was 
assumed that the beam is moving with a harmonic velocity about a 
constant mean velocity. Non-linearity has been introduced by 
including the non-linear strain to the analysis. Dynamic model is 
obtained by Euler-Bernoulli beam assumption and modal expansion 
method. Also, the effects of rotary inertia, axial force, and associated 
boundary conditions of the dynamic model were analyzed. Since the 
complex boundary value problem cannot be solved analytically, the 
multiple scale method is utilized to obtain an approximate solution. 
Finally, the effects of several conditions on the differences among the 
behavior of the non-linear term, mean velocity on natural frequencies 
and the system stability are discussed. 
 

Keywords—Non-linear vibration, stability, axially moving beam, 
bifurcation, multiple scales method. 

I. INTRODUCTION 

XIALLY moving beam with rotating prismatic-joint 
models may be used for many engineering devices; e.g., 

robots applications, telescopic members of loading vehicles, 
space craft antenna, magnetic tape drivers, printers, flexible 
transmission lines, band saws, weaving mechanisms and 
furnace conveyor belts all are classified as axially moving 
beams with rotating prismatic-joint. 

Moving beams can be modeled as linear or non-linear. 
Velocity can be constant or harmonically variable. Time-
dependent transport velocity means a mean velocity plus small 
periodic fluctuations. In fact, many real mechanisms can be 
represented as axially moving beams with time-dependent 
velocity.  

There are many researches which have been carried out on 
axially moving systems in literatures. Wang and Wei [1] 
analyzed a flexible single link with a prismatic joint. 
Translational and rotational motion effects were analyzed on 
the vibratory motion. The lateral vibration of model was 
solved with Galerkin method. By solving some typical 
problems, the numerical results were obtained. Kane et al. [2] 
studied cantilever beam which is moved with rotational and 
translational motion. They studied the effects of centrifugal 
stiffening and investigated vibrations of beam with Coriolis 
forces. Also, they tried to challenge certain multi body 
computer programs used to simulate these problems. In a 
similar work, Gaultier and Cleghorn [3] investigated the 
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vibration of a translational and rotational beam which is model 
of elastic link manipulators by using finite element method. 
Pan et al. [4] analyzed the vibration of flexible manipulators 
with prismatic joint. The prismatic joint was modeled as a 
telescopic manipulator composed of two elastic links. 
Equations of motion and boundary conditions were obtained 
by Lagrange’s equation of motion. Pan et al. [5] consider the 
dynamic model of an axially moving beam and in order to 
validate the dynamic model used an experimental outline. Yuh 
and Young [6] investigated the dynamics of a rotational and 
translational beam. An approximation method was extended 
by using assumed modes method. With using by a series of 
experimental work, the validity of the approximate model was 
evaluated. By using the computer simulation, the dynamic 
response of elastic beam with various motions was 
investigated. Tadikonda and Baruh [7] considered the 
vibration and control of an elastic beam with an end mass at 
the end. The model analyzed the effect of elastic behavior and 
translational motions. The elastic arm was assumed to move in 
a rigid prismatic joint. 

Al-Bedoor and Khulief [8] investigated the dynamics of an 
elastic arm reciprocating in a rotating prismatic joint. In order 
to calculate for the prismatic joint and the effect of an end 
mass, time varying boundary conditions were used. Kalyoncu 
and Botsalı [9] analyzed an elastic robot arm moving in a 
rotating prismatic joint. The equations of motion are given in 
ordinary differential equations. They investigated effect of 
rotary inertia, change of length, and natural frequencies of the 
elastic robot arm. Finally, they have shown tip deflections in 
graphical form and discussed physical trends of the given 
numerical results. Yuksel and Gurgoze [10] solved the flexural 
vibrations of an axially moving robotic arm sliding in 
prismatic joint while the joint was undergoing vertical 
translation and rotary motion. Yang and Sadler [11] 
investigated a modal database procedure for analyzing the 
dynamics of a tracing manipulator. Robot arm always carries a 
mass at the end. But this matter was not follow in Yang and 
Sadler’s investigation. Al-Bedoor and Khulief [12] considered 
a dynamic model for a robot arm sliding through a prismatic 
joint where the prismatic joint was move planar motion. Also, 
a finite element model with a fixed number of elements was 
developed, where the element length was constant. Kalyoncu 
and Botsalı [13] analyzed the effect of axial vibration on the 
bending vibrations of an elastic sliding link in a rotating 
prismatic joint. Chalhoub and Chen [14] presented a general 
method to derive the equations of motion of flexible open 
kinematic chains. They analyzed the serial characteristic of the 
kinematic chain by integrating the 4 × 4 Denavit–Hartenberg 
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transformation matrix with a 4 × 4 structural flexibility matrix. 
The approach was specified based on a rotating coordinate 
system which presented the formulation applicable to both 
translational and rotational motion. Gurgoze and Yuksel [15] 
considered the vibrations of an axially moving flexible beam 
moving through a rotating prismatic joint, restricted to move 
planar motion. Bauchau [16] considered modeling of prismatic 
joints in flexible multi-body systems. For most of rigid bodies, 
the classical formulation of prismatic joints is used. A sliding 
joint was considered, that involves kinematic constraints at the 
point of contact between the sliding bodies. Kalyoncu and 
Botsalı [17] considered lateral and torsional vibrations of 
elastic manipulators with prismatic joint. The arm was 
assumed to carry an end mass. The specified perspective of 
this investigation was consideration of time varying end mass 
at the end of sliding beams in a rotating prismatic joint. 

Ankaralı et al. [18] analyzed a single flexible robot arm 
with ended mass which was moved by a flexible shaft. 
Hamilton’s principle was applied in giving the dynamic 
model. Basher [19] considered the dynamic modeling of a 
flexible beam with rotational and translation movements. They 
studied the effects of higher-order dynamic response of the 
flexible beam. By investigated an infinite number of modes, 
an analytical model of the beam was considered. For 
considering of equation of motion Euler–Bernoulli beam 
equation and modal expansion method was used. Farid and 
Salimi [20] investigated an inverse dynamic method to specify 
the needed torque and force for an in plane arm sliding 
through manipulator with rotational prismatic joints with an 
ended mass. All of the large rotation’s non-linear terms were 
included. Khadem and Pirmohammadi [21] analyzed a 
mathematical model of a three-dimensional flexible 3-degree 
of freedom manipulator, with both rotational and translational 
joint. This model was used for studying the longitudinal, 
transversal, and torsional vibration specifications of the robot 
arm. The equations of motion show longitudinal, transversal, 
and torsional vibration specifications solved in no 
discretization parametric form. Stoenescu and Marghitu [22] 
focused on the effect of prismatic joint inertia on frictional 
dynamics of planar chains. The mathematical model of a 
planar chain with a prismatic joint and a revolute joint was 
obtained using Lagrange’s equations. They also analyzed 
effect of the slider inertia on the position of the application 
point. Akbaba and Yuksel [23] analyzed an elastic beam 
moving in a prismatic. The beam fluctuation was assumed that 
became in two planes and torsional elastic displacements, and 
elastic beam having a mass point at the end. With this 
assumption, the equations of motion were obtained by using 
Hamilton’s Principle. Dehgolan et al. [24] studied linear 
frequencies and stability of a flexible rotor-disk-blades 
system. They used Euler-Bernoulli beam theory and utilized it 
to model the blade and shaft. They analyzed the effects of 
various system parameters on the natural frequencies and 
clarified the decay rates (stability condition).  

Recently, variable speed non-linear beams with Euler-
Bernoulli theory have been considered. In the present 
investigation, a harmonically varying speed non-linear beam 

with mean velocity variation effects is considered. Applying 
multiple scales method, stability and bifurcation of non-trivial 
and trivial steady state response are analyzed. Numerical 
examples helped us to show the effect of non-linear term and 
mean velocity on natural frequencies, critical speeds, 
bifurcation points and stability of trivial and non-trivial 
solutions. Finally, frequency-response curves are drawn. 

II. EQUATIONS OF MOTION 

A beam with axial stiffness of EA and the flexural rigidity 
of EI is shown in Fig. 1. Additionally, this beam is assumed as 
an Euler–Bernoulli beam. The mass and flexible properties are 
assumed to be distributed uniformly along the flexible arm. 
The prismatic joint is assumed to be rigid. The flexible arm 
slides in the prismatic joint. The sliding motion of the flexible 
manipulator is assumed to be frictionless. The initial length of 
the beam is denoted as and a harmonically varying transport 
speed, v. As shown in Fig. 1, w(x,t) describes transverse 
displacements of the beam. For this model, shear deflection is 
not considered, Euler-Bernoulli theory with rotary inertia 
effect is applied, and out of plane motion is neglected. 
Deformation due to pretension is neglected. 
 

 

Fig. 1 Axially moving beam with rotating prismatic-joint 
 

The kinetic energy is given by: 
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The governing partial-differential equation and the 

associated boundary conditions are derived from the 
Hamilton’s principle and the geometrical relations as 
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Using (4), after simplification, the coupled non-linear 

equations would be 
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In reality, the longitudinal disturbances propagate 

significantly faster than the transverse one. To use the multiple 
scales method, the non-linear term must be weak. Then, using 

transformation uw   and its substitution into (7), one 
obtains 
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in which   is a very small parameter (namely, 1  ). As 
mentioned above, the beam is moving with a harmonically 
varying velocity about a constant mean velocity, i.e. 
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In which 1&2  is the frequency of varying speed, 0v  is the 

mean velocity and 1v  is the amplitude. In order to find an 

approximated solution in a finite dimensional function space, 
the Galerkin method is used in this study. The solution of (7) 
is approximated by a series of comparison functions that 
satisfy both the essential and natural boundary conditions. The 
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trial function for the approximated solution may be expressed 
as 
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where N is the total number of comparison functions, ( )nq t  

are unknown functions of time to be determined, and w(x,t) 
are the eigenfunctions for the bending vibration of the 
stationary cantilever beam: 
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The weighting function or the virtual function 
corresponding to (14) is given by: 
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Discretized equations of motion are determined by using 

(14) and (15). Consider an equation obtained by substituting 
(14) into (10), multiplying the resultant equation by (16) and 
then integrating it over the domain 0 1x  : If this equation is 
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discretized equations since ( )q t are arbitrary. The discretized 

equations of axially moving beam with rotating prismatic-joint 
may then be expressed as: 

2 2 2

1 1

2
2

1
1 1 1 1

3
2

1 1

2

2

( ) 2 ( )

( ) ( ) 2
2

3
2

2

2
)( )

3

2

N N

n n n n nm n n n nm n
m m

N N N N

nm n nm n nm n nm n
m m m m

N N

nm n nm n n n
m m

n
n

n

v v
A q v A q B q A q v C q

t t

v v
D q E q F q v G q

t t

H q I q J K v
t

Mv
L

t

v
v P

 

  

  





 

   

 

 
      

 

 
    

 


    



  




 


 

   

 

 



 
2

2

2

2
1

3
4 6 2

2 2

( )

n n n n n

n

O Q J L M
t
v

N
t

   

 

 
 
 
      
 

      
                 (17) 

 
where the superposed dot represents the differentiation with respect to time; are given by 
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Note that the dimensionless natural frequency of the 

stationary cantilever beam, n , is equal to the square of the 

root of n . 

 

III. MULTIPLE SCALES METHOD, STABILITY AND 

BIFURCATIONS 

The straightforward expansion techniques fail to correctly 
represent a proper solution for problems which have secular 
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terms. This deficiency is overcome by assuming the solution 
to be a function of multiple independent time-variables, or 
scales [25]. Then, one assumes the expansion of the form [26], 
[27] 
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One supposes that the solution of (20) is 
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in which n is the natural frequency and ( )n 1t  is the 

amplitude. Substitution of (22) into (21) shows that 
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       (23) 

 
in which when 1  is close to n2 , principal parametric 

resonances will occur. Let us consider 
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where   is the detuning parameter. The solvability condition 
can be obtained using (21) as: 
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As one considers the stationary response, the value of na

and n   will be equal to zero. Elimination of n  between (28) 

and (29) leads to  
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Using (28) and (29) and constructing the Jacobian matrix, 

one has  
0J I                                     (32) 
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From (31) and (33), one has 
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By using the Routh-Hurwitz criterion, the stability 

condition can be obtained as below 
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(For 1 )  

From (31) and (34) and using the Routh-Hurwitz criterion, 
the stability condition can be obtained as below 
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(For 2 ) 

IV. SIMULATION 

In this section, the objectives are to study natural 
frequencies and critical speed variations according to mean 
velocity. Also, the effects of non-linear term, mean velocity on 
stability of trivial and non-trivial solutions are investigated. In 
the other words, one would like to assess how the natural 
frequencies, critical speeds, stability and bifurcation points 
will change when system parameters change. 

Figs. 2 and 3 show that increasing the mean velocity or 
would lead to a reduction in the first two natural frequencies 
of system. 
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Fig. 2 First natural frequency versus the mean velocity and rotary inertia for the first two modes 
 

 

Fig. 3 Second natural frequency versus the mean velocity and rotary inertia for the first two modes 
 

 

Fig. 4 Stability and bifurcation points’ variation for the first mode (dashed line: unstable and solid line: stable) 
 

V. STABILITY  

This section is investigated stability under variation of the 
mean velocity ( 0v ), mean angular velocity ( 0 ) and non-

linear term ( 2 ). Fig. 4 shows that when 1 2    , the 

trivial solution is unstable and bifurcation points arise at 

1   and 2  .The larger mean velocities are likely to 

make “ 1 ” stable. As for Euler-Bernoulli beam, the curve of 

detuning parameter “ 2 ” is always unstable. Increasing “ 0v ” 
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leads to a larger instability area for trivial solution. It means 
that the bifurcation point will appear sooner. 

In Figs. 5-7, when 1  , only stable trivial solution exists. 

When 1  , the trivial solution will be unstable and a stable 

nontrivial solution occurs. When 2  , the trivial solution 

starts to be stable again, and an unstable nontrivial solution 
occurs.  In Figs. 5-7, at 1  , a stable trivial solution exists. 

When 1  , the trivial solution starts to be unstable, and an 

unstable nontrivial solution occurs. At 2  , the trivial 

solution starts to be stable again, and an unstable nontrivial 
solution bifurcates. As for the Euler-Bernoulli beam, the curve 
for detuning parameter “ 2 ” is always unstable. Increasing “

 ” leads to a smaller instability interval for trivial solution. 

 

 

Fig. 5 Stability and bifurcation point variation under the mean translational velocity variation for the first mode 
 

 

Fig. 6 Stability and bifurcation point variation under the mean rotational velocity variation for the first mode 
 

 

Fig. 7 Stability and bifurcation point variation under the non-linear term variation for the first mode 
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VI. CONCLUSIONS 

In this paper, free non-linear vibration of axially moving 
beam with rotating prismatic joint was investigated. The beam 
is moving under constant a mean velocity with small periodic 
fluctuations. The equations were obtained to PDE equations. 
Then, with using multiple scales method, equations were 
transferred to ODE. The objectives were to study effects of 
non-linear term, mean translational and rotational velocity on 
stability of trivial and non-trivial solutions. In this paper, it 
was shown that increasing the mean translational velocity 
causes to a reduction in first natural frequencies of system. 
Also, the principal parametric resonance would arise when 
speed fluctuation frequency is near to the natural frequency. 
Also, increasing mean rotational velocity made a frequency 
increased. Stability and bifurcation of non-trivial and trivial 
steady state responses were analyzed by using Routh-Hurwitz 
criterion. The effects of non-linear term and mean velocity on 
bifurcation points and stability of trivial and non-trivial 
solutions also were investigated, and the frequency-response 
curves were depicted. 
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