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Non approximately inner tensor product of C*—algebras
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Abstract—In this paper, we show that C*—tensor product
of an arbitrary C*—algebra A, (not unital necessary) and
a C*—algebra B without ground state, have no approxi-
mately inner strongly continuous one—parameter group of *—
automorphisms.
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I. INTRODUCTION

Suppose {ay;—0c0 < t < oo} is strongly contin-
uous one—parameter group of *—automorphisms of a
C*—algebra A, where by strongly continuous we mean
la(a) — a|| — 0, as ¢ — 0, for each a € A. We say
the group {oy} is approximately inner if there exist a
sequence {h,} of hermitian elements of A such that

e ac™ — ay(a) | — 0,

as n — oo, for each a € A, where for fixed a the
convergence is uniform for ¢ in compact set.

In quantum field theory and statistical mechanics, one
of the describes a physical system in the terms of a C*—
algebra A.

In quantum lattice systems the dynamics is given
by approximately inner one—parameter groups of x—
automorphism (see the references [5], [6]). It follows
that quantum lattice systems have ground state. Recall,
has shown the existence of ground state for quantum
lattice system in [[4], theorems 2(c) and 4].

If a; and (; are strongly continuous one—parameters
group of x—automorphism with infinitesimal quantum &;
and dy for C*—algebras A and B respectively, then {a;®
B¢} is strongly continuous one—parameter group for A®
B with infinitesimal quantum ((51 I+ I® 52)).

In this paper we shoe that tensor product of an arbi-
trary C*—algebras A (not unital necessary) and a C*—
algebras B without ground state, have no approximately
inner strongly continues one—parameter group of x—
automorphisms.
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II. PRELIMINARIES

in working with a strongly continuous one —parameter
group of x—automorphisms a; it is often useful to
introduce the unbounded derivation § which generates
the group. suppose a; is a strongly continuous group of
*—automorphisms of a C*—algebra A. the generator of
the group o is a derivation J given by

d(a) = lim(ay(a) —a)/t

where the domain D(d) of § is the linear manifolds of

all @ € A such that the above limit exists in the sense

of norm convergence. It follows from semigroup theory

(see [7]) and the fact that oy are x—automorphisms that

0 has the properties,

i) D(6) is a norm dense linear subset of A and J is

linear mapping of D(¢) into A.

ii) D(9) is an algebra and if a,b € D(9) then ab €
D(6) and 6(ab) = §(a)b+ ad(b)

iii) D(J) is a x—algebra and if a € D(0) then a* € D(J)
and 6(a*) = d(a)*

iv) 0 is closed i.e, if a, € D(9) , |lan — al]| — 0 and
l6(an) = b|| — 0 as n — oo then a € D(d) and
d(a) =0.

We present the definitive of a ground state on a C*—
algebra with respect to a one—parameter group of x—
automorphism this definitive is essentially the spectral
condition of quantum field theory.

Definition 2.1: Suppose {a;} is a one—parameter
group of x—automorphism of a C*—algebra A, we say
w is a ground state of A for the group {;}, if w is a
state of A with the property, if a,b € A then w(aa(b))
is a continuous function of ¢ and

/ h(t)w(acs(b))dt = 0,

for all continuous L!—functions h whose Fourier trans-
form

W) = \/% / e~ n(1)dt,

vanishes on the negative real axis (—oo, 0].

Theorem 2.1: Suppose {ay} is a one—parameter group
of x—automorphism of a C*—algebra A, suppose ¢ is the
generator of {a;} and D is a core for ¢ , then a state w
is a ground state for {«} if and only if

—iw(a*d(a)) >0
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for all @ € D.
Proof. See [1]

Theorem 2.2: Suppose {cy} is a strongly continuous
one—parameter group of *—automorphisms of a C*-—
algebra A, suppose {4} is approximately inner, then
there exists a ground state w for {c; }. This ground state
need not be unique.

Proof. See [1]

Let A, B be C*—algebras and A® B be theirs algebraic
tensor product. Let 71, m2 be faithful representation of
A, B on Hilbert spaces Hj, Hy respectively, and define

1> a; @bjlls =11 > mi(ay) @ ma(by)ll
J j

where a; € A,b; € B and the norm on the right hand
side is the operator norm on the Hilbert space H; @ Ha.
This norm is the Spatial C*—norm on A ® B and refer
to the C*—algebra A ®, B as the spatial tensor product
of A and B.

Let 01,92 be generators of strongly continuous one-
parameter groups of automorphisms on A, B respec-
tively. We define 6y ® I + 1 ® 6 on A® B by

(51 @01+ 1®5)(a®b) =0d1(a) @b+ a® da(b)

where (a € D(d1),b € D(d2))

In this paper we denote 1 ® I + I ® d2 by §1 ® Jo.
The §1 ® 05 is closable x—derivation and its closure is an
infinitesimal generator on A ®¢ B. [1]

Let G be a locally compact group and let yu be a
left invariant Haar measure on G and let L'(G) be
the Banach space of all complex valued p—integrable
functions on G. For f, g € L*(G) define a multiplication
* and x—operation as follows:

fxg(z) = /G Fay)gly™)dy

— [ f@gty )y,
G

and f*(x)A(x~1) f(z~1), where A is the modular func-
tion on G. Let f € L'(G) and define the operator L
on L*(G) by Ls(g9) = f*g,(g € L*(G)), then the
mapping f — Ly is a bounded representation of the
algebra L' (G). For instance, 4Ly, L1, (g) = fi*(foxg) =
(fix f2) xg = Ly,.5,(g).4 Hence Ly.y, = Ly, Ly, the
inequality
1 gl < 11 g1l

implies that ||Ls|| < ||f|1, where f € LY(G),g €
L*(@).

Suppose K (G) is the set of all complex—valued square
summable functions on G with compact support. K(G)
isx—subalgebra of L!(G) N L?(G). Define

T(G)=A{Ls: feK(G)},

and C7(G) to be the C*-algebra generated by T(G).
C¥(G) is the reduced C*—algebra of G.

If f € LY(G) , there exist a sequence {f,} in K(G)
such that || f,, — f]j1 — O thus

ILg, = Ll < [lfn = flln =0,
therefore C(G) is the C*—algebra generated by the set

{Ly : fellG))
Define K'(G) by
K'(G)={f € LY(G) : f has a compact support}
then K(G) C K'(G) and x—subalgebra
D={L;: f€K(G))

is dense in CX(G)
Let 6 be a complex—valued measurable function on G

, such that # is bounded on any compact subset of G.
if fe K'(G), then 0f € K'(G). Since

L1o@1s@)de = [ p@llf@)de
< sup [6(@)]| ]

where C' is the support of f.

Suppose Hom(G, R) is the set of all real-valued
homomorphisms from G to R and 6 is a continuous
homomorphism in Hom(G, R).

We define dp from D into D by g(Ly) = iLgy.
Niknam in [] has shown that dy is closable x—derivation
and its closure is an infinitesimal generator of C(G).

Theorem 2.3: Let G be a locally compact group and
6 € Hom(G,R) be measurable function, then dp is
closable x—derivation from D to D and its closure Jy is
an infinitesimal generator of a strongly continuous one—
parameter group of x—automorphisms.

Proof. See [1]

In the proof of the above theorem, if we define o :
D — D be ay(Lf) = L,ito;, where f € K'(G), then
{a;} is a strongly continuous one—parameter group of
*—automorphisms by infinitesimal generator &y, for 6 €
Hom(G, R).

III. THE RESULT

In this section, the main result of this work mentioned
as a following theorem.

Theorem 3.1: Let A and B be (C*-algebra and B
is not unital necessary. Suppose that {a;} and {f;}
are strongly continuous one—parameter group of *—
automorphisms on A and B with infinitesimal generators
91 and o2 respectively. If {a;} has not ground state and
if there exist an element © € B such that d2(z) = 0,
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then, the one—parameter automorphism group {o; ® ¢}
of A®; B is not approximately inner.

Proof: If {«; ® [3;} were approximately inner, then,
by using Theorem 2.2, would be a ground state w for
{a4 ® B} an A ®4 B. Let ® be the state on A defined
by

®(a) =w(a® ™)
where da(x) = 0.
Since

(a®x)*(01 ® d2)(a ® x)

=(@®z) (01 ®I+1®d)(a® )
=@ )[61®I a®x) (I ®d2)(a® )]
= (@ @a")[(0 +(a® da(x))]
= (a” ®»’C*)(51( ) )
= (a%01(a) @ 2"x),
Hence
—i®(a*d1(a)) = —iw(a*01(a) @ x*x)
= —iw((a ® )" (01 ® d2)(a ® x)) >0,

it follows by theorem 2.1 that & would be a ground state
for {a;}, the contradiction shows that {c; ® (3} is not
approximately inner.

Following example clear above theorem:

Example 3.1: If G = R be is a locally compact group,
then by Theorem 2.3, there exist a strongly continuous
one—parameter group of x—automorphisms {a;} with
infinitesimal generator dyp for # € Hom(R, R) of reduced
C*—algebra C}(R), for function f € L'(R), by

_Jo reQ
f(x)_{1 reER-Q

we have dg(Ls) = 0, hence if {3;} be a one—parameter
group of *x—automorphisms on C*-algebra B without
ground state, then by theorem 3.1 {a;® (3;} is a strongly
continuous one—parameter group of x—automorphisms on
C*(R) ® A that is not approximately inner. In particular
if G be a discrete group, then by [2], C¥(G) has a one
parameter group without ground state. Hence, we can
apply it instead A in above example.

IV. CONCLUSION

In this paper, we had shown that tensor product of an
arbitrary C*—algebra A, (not unital necessary) and a C*—
algebra B without ground state, have no approximately
inner strongly continuous one—parameter group of x—
automorphisms.
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