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Abstract—In this paper, we analyze the effect of noise in a single-
ended input differential amplifier working at high frequencies. Both
extrinsic and intrinsic noise are analyzed using time domain method
employing techniques from stochastic calculus. Stochastic differential
equations are used to obtain autocorrelation functions of the output
noise voltage and other solution statistics like mean and variance. The
analysis leads to important design implications and suggests changes
in the device parameters for improved noise characteristics of the
differential amplifier.
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I. INTRODUCTION

He differential pair or differential amplifier configura-
tion is the most widely used building block in analog
integrated-circuit design. For instance, the input stage of
every operational-amplifier is a differential amplifier. Double-
ended input differential amplifiers are much less sensitive to
noise and interference than single-ended differential ampli-
fiers. Thus, noise is a significant problem in single ended
differential amplifiers which play a key role in hard disk drive
(HDD) applications. A single-ended differential input ampli-
fier is used as the initial amplification stage of a preamplifier
used in the read channel of a HDD application [1]. In hard
disk drives, a magnetic read head moves over a portion of
the hard disk when reading data. A preamplifier, having an
initial amplification stage of the single-ended type, connects
to the magnetic read head and amplifies a data signal picked
up by the magnetic read head. Therefore, there is a need of
single-ended differential input amplifier with improved noise
characteristics.
In this paper, we shall concentrate on the noise analysis of
a single-ended differential amplifier. We analyze the effect of
the noise signal on the output voltage. Noise can enter the
circuit via various paths - the noise from within the amplifier
(intrinsic) and the noise signal which is fed externally from a
read head (extrinsic). This extrinsic noise enters into the read
channels of the preamplifier from the substrate capacitances
of the input transistors connected to the read heads [1].
Circuit noise analysis is traditionally done in frequency
domain. The approach is effective in cases where the circuit
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is linear and time invariant. But the approach is not applica-
ble for the extrinsic noise because the system may not be
either linear or time invariant due to the switching nature
of the signal picked [2]. Before going any further, it should
be clearly understood that intrinsic noise being random is
common to both the inputs and therefore the corresponding
differential output voltage is zero provided the transistors are
well matched. The circuit amplifies the external noise signals
picked up from the magnetic read head (which basically acts
as a differential input fed in a single-ended fashion), yet it
rejects the intrinsic noise signals which are common to both
the inputs. Therefore, analysis for the intrinsic noise is not of
much use and in this paper we do rigorous analysis of extrinsic
noise for the topology wherein the differential amplifier is not
fed in the complimentary fashion, rather, the input is applied to
one of the input terminals while the other terminal is grounded
(Fig.1).

For the stochastic model being used in the paper, the
external noise is assumed to be a white Gaussian noise process.
Although the assumption of a white Gaussian noise is an
idealization, it may be justified because of the existence of
many random input effects. According to the Central Limit
Theorem, when the uncertainty is due to additive effects of
many random factors, the probability distribution of such
random variables is Gaussian. It may be difficult to isolate
and model each factor that produces uncertainty in the circuit
analysis. Therefore, the noise sources are assumed to be white
with a flat power spectral density (PSD).

In this method, we shall follow a time domain approach
based on solving a SDE. The method of SDE:s in circuit noise
analysis was used in [3] from a circuit simulation point of
view. Their approach is based on linearization of SDEs about
its simulated deterministic trajectory. In this paper we will use
a different approach from which analytical solution to the SDE
will be obtained. The analytical solution will take into account
the circuit time varying nature and it will be shown that the
noise becomes significant at high input signal frequencies. The
main aim of our analysis is to observe the effect of noise
present in the input signal on the output of the differential
amplifier and find out the frequencies at or above which the
noise becomes significant.

The rest of the paper is organized as follows. Section II
derives the differential equations governing noise variance
processes and solves them in time domain. In Section 111, we
use state variable method to do the same which essentially
combines all the equations into one state equation which can
be solved to get the desired solution statistics. Section IV
provides with the simulation results and design implications
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Fig. 1. Differential amplifier with one
end grounded

followed by the conclusions in Section V.
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Fig. 2. High-frequency equivalent
half-circuit
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Fig. 3. Simplified high-frequency
equivalent half-circuit

II. ANALYSIS OF NOISE VIA SDEs

Consider a differential amplifier with one end grounded
and the other end provided with the input signal (Fig. 1)
whose high-frequency equivalent half-circuit is depicted in
Fig.2. Henceforth, we analyze the system using SDEs. A
very important assumption used during the analysis is that
the two transistors Q1 and Q2 have been considered to be

perfectly matched. Simplifying the circuit in Fig. 2 using
Miller’s Theorem, we obtain Fig. 3 for which,
Vs(D) — v (D) v (D) v (1)
= C
R. r YTt
where C; represents the input capacitance C; = C, + C,,(1+
Jm Rr) and

(O]

O’V()(f) Vo(T) .
ot R, —gm V(1) (@3]

where Cy =~ C,,. Using some straightforward simplifications,
(1) can be written as

Co

avy(t) A
Jt +k1'/7r(f)_ R C (3)
where ki = & (% ) Considering v,(f) = n(t), where

n(t) represents Gaus51an white noise process and 2 is the
magnitude of PSD of input noise process. Substituting v, (f) =
n(t) in (3), we obtain
av. (1)

dt

n(t)
R.Ci

+ ki Vﬂ(t) = “4)

First, we multiply both sides of (4) with df, then take ex-
pectation both sides. Since the continuous-time white noise
process is a generalized function, the solution is rewritten by
the replacement n(f)dt = dW(t), where W(1) is the Wiener
motion process, a continuous, but not differentiable process

[4].

E[ W(t
GE v (0] + ki Elva (Dot = ELOL )
Using the fact that E[dW/(t)] = 0, (5) results in the following:
Elv,(t
EV=(0 | ki Elva(] = 0 ©

The above equation describes the mean of the output process,
which happens to be exactly the same as the differential
equation for the system without noise. The solution of (6)
is found out to be

Eve(D)] = cre”krt @)

where ¢; is a constant whose value depends on the initial
circuit conditions. Next, we consider (2) because one of our
main purposes is to find the mean of the output due to input
noise signal. Simplifying and taking expectation on both sides
of (2) we get the following equation for the mean of output

dEv (D] | Ev(D] _ —Gm
= Elv.(t 8
O R.Co G [vx ()] ®)
the solution to which is
Elvo(t)etst = —Ima / b2kt gt ©
Co
where k; = -——. On solving (9) we get
Co
E t 2t _ (ko—k1)t 1
[vo( )]e’“ (RT3 + 03 (10)
where ¢, = _gc’:‘cl and ¢3 is constant of integration whose

value depends on initial conditions provided. It is evident for
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initial conditions of 1(0) = 0 and V,(0) = 0 that mean of
output voltage is zero.

Next we find the autocorrelation function which will lead
us to finding the variance. For pedagogical reasons, the auto-
correlation function is obtained considering initial conditions
of 15(0) = 0 and v,;(0) = 0. Rewriting equations (2) and (3)
with some straightforward simplifications, we obtain

dVQ(f) n Vo(f) - —ngw(f)

at R.Co G an
av.(t) (D)
o kuva(t) = RC 12)

Next, we consider (11) at time ! = f» with initial conditions
R,UU,,UU(H,O) = E[Vo(tl)VO(fQ)]|t2:0 = 0. Multlplymg both
sides of (11) with v5(#;) and then taking the expectation, we

obtain
dR’uo,'uo(fll t2) + Rvo7v0(t1/ tZ) _ _g7nRv0,v7,(tll f2) (]3)

dty CoRyL Co

Again consider (11) at { = # and with initial conditions

Ry, (0, 1) = E[Vo(t)Vr(f2)]|t;=0 = 0. Multiplying both

sides of (11) with v,(%;) and taking the expectation, we obtain
dRUoﬂ)w(tl' 12) ¥ Rvo,v,r(tlz IZ) 7ngv,”v,,(Z‘1/ t?)

= 14
df1 CORL CO ( )

Next, we consider (12) at t = #; and with initial conditions
Ry v, (0, &) = E[Vr(t1) Ve (t2)]]t,=0 = 0. Multiplying both
sides of (12) with v,(f;) and then taking the expectation, we
obtain

ARy, v, (t, 1)
dh

/?vsgu7r ( 2‘1/ f2)

KRy (1, 1) = 25

15)

Again consider (12) at t = t, and with initial conditions
Ry, v, (11,0) = E[Vs(f)Vr(f2)]|ts=0 = 0. Multiplying both
sides of (12) with v,(f;) and taking the expectation, we obtain

Rvs Vs ( z‘1 ’ t2)
R.C;

ARy, v, (11, I2)

kR, h, b) =
b + ki Ry, 0, (1, 2)

(16)

We need to solve the differential equations (13), (14), (15)
and (16) to find out the value of Ry, 4, (f, f2). Knowing that
Ry, v.(h. k) = 2 (t; — ty), we find the solution of (16) as

2
Rvs’v,,(tlz 2(»2) _ W6,1@1(1517152) (]7)

s

Substituting the value of R, ,_ (f, ) from (17) in (15) and
taking limit of #; from 0 to min(?;, f»),we obtain the solution
of (15) as

R’U-,rﬂ)ﬂ(tll t2) _ efh(h*h) _ e*k’l(tﬁ»tz))

(18)

Substituting the value of R,_,,_(#, fz) from (18) in (14) and

2
2k1 (R C;)? <

taking limit of #; from 0 to min(f;, f2), we obtain the solution
of (14) as

R’Un,v,,(tll l‘2) = k" (etc?oﬂ’t[i — e(klt27C(;}%L)

%L*klco

_ (-2t Tt) e(’“”?c&‘u)) (19)

2 .
where k3 = 2[&%)2. We now substitute the value of

Rug v, (1, 12) frorln (1 93 in (13) and obtain the autocorrelation
function as follows,

,gmk:j to—t1 —t1—tg RLCO
R — ELCo — p RLC
vo,vo(tll tZ) %L 7/(160 ((e L0 e Lo > 3

_ _t2 _t1 __t1 —t1—ta
(6’ 2klt2+cORL CoRp, ,29’“”2 CoRL + @ CoRyr )
2 (ki + o

1T CoRL

<87k1t276'l;7}?L — e%)
- > (20)

_1
CoRL 1

+

For f; = & = t in (20) we obtain the second moment of
output voltage as E[VZ(t)] (which is variance in this case),

EG(] = -"3((1@%) =

1%, — Kk Cy
(e*%lt — 2e(k17ﬁ>t + eﬁ)
1
2 (ki + oy )

(e(fklfﬁ)t — eﬁ)
) 21

+

1
CoRr ky

III. STATE VARIABLE APPROACH

The resulting equations for the solution statistics can also
be derived by using a very similar time domain technique
which essentially clubs the dynamics of the variables v, and
Vz, (which determine the state of the system) into a single
state equation. The technique is useful as it helps in finding
not only the first two moments but also the cross-correlation
of a state variable with the other state of the circuit. The state
equation obtained from (2) and (3) is,

S(H)-(F %) ()
+( % )vs(r) (22)

As it can be observed that (22) is of the form

ax(1)
dt

= AX(1) + By (1) (23)

where
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V(1) and v, (1) represent the state variables,

—1 —9m
_ [ Gor C
= %)

5= ()
R, C;

Substituting vs(t) = n(t) in (23), we get
ax (1)
dt

To get a stochastic differential equation we first multiply the

above equation by dt and then replace n(f)dt by dW/(i),

where W(t) is a Wiener or Brownian motion process with
E[dW(t)] =0, and E[dW?(t)] = Z2dt.

dX(f) = AX(Hdt+B dW(i) (25)

The analytic solution of X(t) is given by,

X(f) = ert (x(0)+/t eAB dW/( )) (26)

0

= AX()+B n( (24)

Next, we consider the statistics of the solution process of
X(t) of (24). The next result indicates that the first two
moments of X(t) can be obtained as a solution of initial
value problems involving linear ordinary differential equations.
It is evident from above that E[X(f)] = eA*X(0) because
expectation of a Brownian process is zero. Also we consider
M(#) = E[X()XT ()] and assume £|X(0)|? < oc. Towards
solving M(t), we use product rule for SDEs (appendix A),
which in context of (24) becomes

d(X(HXT (1) = X(t)ax" () + (ax (1) X" () + BB 2at
@n
Substituting dX(t) and dX7'(f) derived from (25) in (27) we
obtain
d(X(OXT (1) = ATX(HXT (Hdt+ X(HBT aW(t)
+AX(HXT (Dt + BXT (1) dW(1) +BBT 2dt (28)

Taking expectation on both sides of (28) and putting
E[X(HXT(1)] = M(?) as stated above, we obtain
aM(t)
dt
and M(0) = £[X(0)X7T(0)]. Substituting the value of A and
B in (29) we get

—2 —gm
L\;(’) _ < or O )M(l‘) (2
t & Tk 0wy

30)
which can be solved to get M(f) = E[X(#)XT(1)]. Expres-
sions for other solutions statistics, for example, the covariance
matrices can be also similarly derived. As it is known that
E[X(5)XT(1)] = Ryu(s t) where Ry, represents the auto-
correlation, for the narrow-sense linear equation of the form
(24), we get correlation as

min(s,t)
Ruslst)= () (M(o>+ / 1(u)B2du> (0"
(€2

= AM(H) + AT™M(f) + BB 2 (29)

which can be easily solved.
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Fig. 4. Variation of mean with time

Variance

Fig. 5. Variation of variance with time

IV. SIMULATION RESULTS AND DESIGN
IMPLICATIONS

For the simulation of the results obtained above, we use
the following values for the circuit parameters R. = 10*Q,
Rs =5 x 103Q, rr = 1.5 x 103Q, C, = 2pF, C, = 0.8pF,
V4 =100V, = 200. For pedagogical reasons, we consider

= 0.25. Although these values may not be used in the actual
application, but they are well chosen for functioning of device
within 50 MHz.

Noise in differential amplifiers is analyzed. It should be
stressed that although the conclusions are drawn using a very
simple and idealized model for differential amplifiers, without
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Fig. 7. Effect of device parameter C,

taking into many of the other effects (like offset, transistor
mismatch etc.). However, we expect this simple approach
captures the major effects and may be further extended, which
may involve differential equations of higher order.

When initial conditions are nonzero, (15(0) = 0.01V and
Vr(0) = 0.01V), it is observed from the graph of magnitude
of first moment of output voltage that initially the magnitude
rises to a maximum value of 12.375 volts after which it falls
in an exponential fashion (as shown in Fig. 4). It has been
calculated that mean reaches its steady state value of zero after
a duration of approximately 7u/s. Although if initial conditions
are zero the mean is zero all the time, as stated before. From
Fig. 5 it is observed that the variance reaches a constant value
of 9.6528 x 102 after 7.44/s. The maximum value of variance
is 1.8 x 1073,

This data can be used to guide the design process. The
analysis shows that if the input signal frequency is greater than
142.8kHz then the signal time period would be less than the
time during which the mean varies. Therefore for the signals of
frequencies above 10 MHz (as in the case of HDD application
[1]), there would be more than 70 cycles of erroneous results.
The fallacy is pertinent and would be more detrimental if the
output is taken only for a few starting cycles.

To aid noise reduction, the poles of the single ended
amplifier should be matched. This effectively reduces the noise
which is common on the inputs to a single ended differential
amplifier. Corresponding to this common noise signal, even
if the output is taken single endedly it can be made close
to zero by increasing the output resistance Rrp of the bias
current source. This was regarding the intrinsic noise. For
the extrinsic noise, our analysis suggests that the variance
can be changed by varying the values of transistor’s device
parameters. It is evident from Fig. 6 that with increasing values
of C,, variance decreases. Although the variance decreases
with the higher value of C;, but this would result in lowering
of the bandwidth. Therefore for the circuit design the value of
C, must be chosen so that noise reduction is achieved without
sacrificing much on the bandwidth. On the other hand if a
decrease in bandwidth is not acceptable C,; may be maintained
constant and the value of C, can be varied to accomplish the
purpose, as a decrease in the value of C, would not only
decrease the variance (Fig. 7) but also increase the bandwidth
of the amplifier, which is required in hard disk drives [1] or
in any such device which requires the operation on high range
of frequencies with low noise. This method is much better
than the common industrial practice of increasing emitter
resistance thereby providing a negative feedback. Although
the signal feedback tends to hold down the amount of noise
signal, however, it should be noted that by this there is a
reduction in the overall gain of the amplifier. This method
suggested although necessitates fabrication of transistors with
lower device parameters of C,,, but it does not interfere with
the mid band gain of the amplifier.

V. CONCLUSIONS

Noise in single-ended input differential amplifier is analyzed
using stochastic differential equation. Extrinsic noise is char-
acterized by solving a SDE analytically in time domain. The
closed form solution for various solution statistics like mean
and variance is obtained which can be used for design process.
It has been shown that noise becomes significant at high input
frequencies. Suitable design methods which involve changing
of device parameters are suggested to aid noise reduction and
hence design the amplifier with reduced noise characteristics.

VI. APPENDIX A

Derivation of E[X?] in the SDE

In this Appendix, we will derive (29). The necessary back-
ground is introduced to make this section as self-contained
as possible. Thermal noise is often modelled as white noise,
whose PSD is flat for all frequencies upto infinity. However,
white noise is not a physical process because it has infinite
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power. Therefore to treat noise rigorously, we need to define
its integral, called Wiener process, which can be approximated
by physical processes

W(t) = /Ut n(s)ds 32)

A Wiener process has a continuous sample path and inde-
pendent Gaussian increments. However, sample paths of a
Wiener process have unbounded variation (or infinite length),
so it is difficult to find the solution of a Wiener process. Ito’s
stochastic calculus is invented precisely to solve this problem
[6]-[9].

For the general linear case of stochastic differential equation

aX (1) = (F(O+F(OX (1)) at+ Y (i 0+Ga(HX (1)) dWi(t
i=1

(33)
where X(f) represents a random n vector process, W(f) =
[WA(Y), ..., Wi (D] is an m-vector standard Wiener process,
F (1) and the G;({) are nx n matrix functions, and f(#) and the
g (1) are n vector functions, respectively [10]. Let ®(¢) be the
fundamental matrix of the corresponding to (33) homogenous
equation

dd(1) = F(H)d(1)at + i Gi(DO(HaW,(H)  (34)

that is ®(7) is the 1% N matrix solution of (34) which satisfies
®(0) = I. The solution of (33) can be written as

X(1) = 2(1) <x<o> S ARCILEE SETEPIBIES

m

2517-9438
No:2, 2008

that Ito’s formula leads to the product rule for stochastic
differentials, which, in this case takes the form

d(X(HXT (1)) = X()aXT (1) + (aX (1) X (1)
2 (Gu0X(0 +:(0) (XT(OGT () + 8T (1)t (37)
Substituting for dX(f) and dX7T(?) in (37), writing in

integral form, and taking expected value leads to the integral
equation equivalent to the initial value problem

dMI(f) S
= = FOOM() + M(OF (1) + ; Gi(HM()G (9

(O () +m(OE7 () + 3 (G(m(ne] (1)

+e:(hm” (NGT (1) + gi(0g] (1)) (38)

and M(0) = E[X(0)XT(0)].
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