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Abstract—The purpose of this study was to evaluate and 
compare new indices based on the discrete wavelet transform 
with another spectral parameters proposed in the literature as 
mean average voltage, median frequency and ratios between 
spectral moments applied to estimate acute exercise-induced 
changes in power output, i.e., to assess peripheral muscle 
fatigue during a dynamic fatiguing protocol. 15 trained 
subjects performed 5 sets consisting of 10 leg press, with 2 
minutes rest between sets. Surface electromyography was 
recorded from vastus medialis (VM) muscle. Several surface 
electromyographic parameters were compared to detect 
peripheral muscle fatigue. These were: mean average voltage 
(MAV), median spectral frequency (Fmed), Dimitrov spectral 
index of muscle fatigue (FInsm5), as well as other five 
parameters obtained from the discrete wavelet transform 
(DWT) as ratios between different scales. The new wavelet 
indices achieved the best results in Pearson correlation 
coefficients with power output changes during acute dynamic 
contractions. Their regressions were significantly different 
from MAV and Fmed. On the other hand, they showed the 
highest robustness in presence of additive white gaussian 
noise for different signal to noise ratios (SNRs). Therefore, 
peripheral impairments assessed by sEMG wavelet indices 
may be a relevant factor involved in the loss of power output 
after dynamic high-loading fatiguing task. 

Keywords—Median Frequency, EMG, wavelet transform, 
muscle fatigue. 

I. INTRODUCTION

URFACE electromyography (sEMG) is an non-invasive 
tool which provides valuable information about 

neuromuscular function. Recording of sEMG signals has been 
used during recent years in sports research area as a 
complement to the strength data to assess local muscle fatigue. 
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Isometric tests have been applied by other researches to assess 
muscle fatigue due to the stationarity of the sEMG signals 
under these conditions [1], [2]. Traditional temporal 
parameters as mean or root mean square, and spectral 
parameters as the mean or median frequency calculated over 
the power spectral density obtained from the Fourier 
transform have been applied to quantify muscle fatigue in 
maximal voluntary contractions before and after isokinetic [3] 
and isotonic dynamic exercises [4]-[7]. Besides ratios between 
high frequency and low frequency bands have been also 
applied to isometric contractions to estimate fatigue [8]-[11]. 
Fatigue assessment is more relevant to daily function, that is 
why researchers have recently focused on procedures to 
estimate fatigue during dynamic instead of isometric 
contractions. However the sEMG signal becomes non-
stationary under these conditions and the traditional 
parameters decrease in sensitivity to show the amplitude and 
spectral shifts of the power spectral density, and therefore new 
parameters are needed to assess muscle fatigue. As suggested 
by Dimitrov [12], ratios between different spectral moments 
calculated over the power spectral density obtained using the 
fast Fourier transform presented a much higher sensitivity 
under both isometric and dynamic contractions. Otherwise, 
time-frequency processing techniques are more suitable to 
deal with non-stationary sEMG signals, as the discrete wavelet 
transform (DWT). The DWT has been successfully applied to 
detect biological events [13], in the analysis of 
electromyographic (EMG) and electrocardiographic (ECG) 
recordings [14]-[17], electroencephalographic (EEG) signals 
for analysis of epileptic activity [18], or event-related 
potentials [19]. Moreover they have been also applied in 
feature extraction from sEMG signals as a source for 
controlling assistive devices [20]-[23]. Some authors have 
applied DWT to analyze muscle fatigue during isokinetic 
contractions [24] or estimating power spectrum of sEMG 
signals during dynamic contractions [25], [26]. The new five 
indices proposed make use of the DWT. They have been 
calculated as ratios of spectral moments and other features 
between two different wavelet scales, reflecting low and high 
frequency components of the signals. In this work, we 
compare the performance of MAV, Fmed, Dimitrov and 
wavelet indices to assess muscle fatigue during dynamic 
contractions by Pearson correlation coefficients and we 
measure the goodness-of-fit of their regressions. Besides, we 
analyze the behavior of the above parameters with signals 
with different SNRs. 
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II. MATERIAL 

A. Experimental design 
Fifteen physically active men (age, 34.2 ± 5.2 yr; height, 

177.3 ± 5.6 cm; body mass, 73.1 ± 6.4 kg) (mean ± SD) 
volunteered to participate in the study.  

The protocol consisted of 5 sets of 10 repetition maximum 
leg press (10RM) (i.e. the heaviest load that could be correctly 
pressed only 10 consecutive times using the correct technique) 
with 120 s of rest between sets. Each trial was performed on a 
bilateral leg extension exercise machine (i.e. leg press action 
in a sitting position) (Technogym, Gambettola, Italy). The trial 
began with a knee angle of 90º and a hip angle of 45º, and 
finalized when subjects extended their legs to achieve a knee 
angle of 180º and a hip angle of 90º. Muscle power output of 
the leg extensor muscles was measured during the concentric 
phase of leg press. 

B. Surface Electromyography (sEMG) 
sEMG activity during the extension actions of the leg 

muscles was recorded from the vastus medialis (VM) of the 
right leg by pairs of bipolar surface electrodes (Blue Sensor 
N-00-S, Medicotest) with a distance between the electrode’s 
centres of 20mm.  

EMG signals were recorded at a sampling rate of 1kHz with 
a Muscle Tester ME3000 (Mega Electronics Ltd) (bandwidth 
of 8-500Hz / 3dB and a common mode rejection ratio > 
100dB). To facilitate and normalize the analysis, the knee 
movement was divided into 4 intervals of 22.5º. The 
parameters analyzed in the present study corresponded to the 
first interval of the movement of the dynamic contractions 
(from 90º to 112.5º of knee movement), where the VM had its 
maximal activation. 

III. METHODS

A. EMG parameters 
Eight parameters were used to analyze the relative changes 

in power output to quantify muscle fatigue: the mean average 
voltage, the median frequency, the spectral parameter 
proposed by Dimitrov and another five new indices proposed 
by the authors based on the discrete wavelet transform 
(DWT).

A.1. Mean Average Voltage(MAV) 
MAV was calculated after a full-wave rectification and 

filtered by a moving root-mean-squared filter with a time 
constant of 50ms, as the integrated EMG divided by the 
integration time.  

A.2. Median frequency (Fmed)
Fmed was calculated numerically from the following 

equation: 
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where PS(f) is the EMG signal power spectrum calculated 
using Fourier Transform, f1=8 Hz and f2=500 Hz (determined 
for the bandwidth of the surface electromyograph). 

A.3. The spectral parameter proposed by Dimitrov 
(FInsm5)

This parameter was designed to overcome the low 
sensitivity of the median frequency [1]: 
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where PS(f) is the EMG power spectrum calculated using 
Fourier Transform and f1=8 Hz and f2=500 Hz.

Fig 1. (a) sEMG original signal (i) and wavelet details at scales 1 to 5 
(ii-iv). (b) Power spectrum using fast Fourier transform for original 

sEMG signal (i) and wavelet details at scales 1 to 5(ii-iv). 

A.4. New wavelet indices proposed to quantify muscle 
fatigue.

The DWT is a transformation into a wavelet basis space. 
This time-frequency wavelet representation is performed by 
repeatedly filtering the signal with a pair of filters. 

Specifically, the DWT decomposes a signal into an 
approximation signal using a low-pass filter h[n] and a detail 
signal using a high-pass filter g[n]. Both low-pass and high-
pass filters are synthesized from the wavelet function ( )t
and the scaling function ( )t , respectively. The 
approximation signal is subsequently divided into new 
approximation and detail signals. This process is carried out 
iteratively producing a set of approximation signals at 
different detail levels (scales) and a final gross approximation 
of the signal. The detail Dj and the approximation Aj at level j
can be obtained by filtering the signal with h and g,
respectively: 
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where 0[ ]A n , n = 0,1,…N-1 is the original EMG sequence. If 
we focus on the detail signals, their processing using the DWT 
can be considered as a filter bank [27]. This can be observed in 
figure 1, where the discrete Fourier transforms of the first five 
details (using the wavelet symlet 5) of a 500 ms EMG signal 
are shown. 

The DWT was calculated using the Mallat’s algorithm [28]. 
We tried different wavelet functions ( )t  to calculate the 
wavelet indices and finally we chose the symlet 5 (sym5) and 
the Daubechies 5 (db5), which experimentally yielded the best 
results. 

Five different indices were calculated using the DWT: 

1. Wavelet indices ratios between moments at different 
scales. Three parameters were calculated from spectral 
moments: 

(a) Wavelet index of ratio between moment -1 at scale 5 and 
moment 5 at scale 1 (WIRM1551). This parameter was 
calculated as: 
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where D5(f) and D1(f) are the power spectra calculated using 
Fourier Transform of the five and first scales respectively of 
the DWT using the wavelet sym5, and f1=8 Hz and f2=500 Hz. 

(b) Wavelet index of ratio between moment -1 at maximum 
energy scale and moment 5 at scale 1 (WIRM1M51).
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where Dmax(f) and D1(f) are the power spectra calculated using 
Fourier Transform of the maximum energy and first scales 
respectively of the DWT using the wavelet db5, and f1=8 Hz 
and f2=500 Hz. The maximum energy scale in this work was 
usually scale 4. 

(c) Wavelet index of ratio between moment -1 at scale 5 and 
moment 2 at scale 2 (WIRM1522).
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where D5(f) and D2(f) are the power spectra calculated using 
Fourier Transform of the five and second scales respectively 
of the DWT using the wavelet db5, and f1=8 Hz and f2=500
Hz.
(d) Wavelet index of ratio of energies at scales 5 and 1 
(WIRE51):
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where D5[n] and D1[n] are the details at scales five and one 
respectively of the DWT calculated using the wavelet sym5. 

2. Wavelet index ratio between square waveform lengths at 
different scales (WIRW51). Waveform length is a parameter 
that measures the cumulative changes in amplitude from time 
sample to time sample over the whole signal. Waveform 
length effectively encapsulates the amplitude, frequency, and 
duration of the EMG signal in one simple formula [29]. The 
index was calculated as: 
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where D5[n] and D1[n] are the details at scales five and one 
respectively of the DWT calculated using the wavelet sym5. 

B. Statistical analysis 
Changes in percentage between each variable (sEMG-based 

parameters and peak power) and the averaged of the values of 
the first two contractions were calculated. Those percentage 
changes which did not follow a normal distribution were log-
transformed. ANOVA tests were used to calculate the 
significant differences in groups of 5 contractions (average of 
the values of the parameters recorded in 5 consecutive 
contractions). Pearson correlation was used to analyze the 
relationship between changes in peak power and sEMG-based 
parameters. The p<0.05 was used to establish statistical 
significance. 

To measure the goodness-of-fit of the regressions of the 
sEMG parameters, we used the residual values of their 
regressions. The lower the variance of the residuals is, the 
better the regression of the parameters. Levene’s test was 
applied to reject the equality of the variances of the residual 
values of the regressions. Then, to find significant differences 
among the regressions, we took the square root of the absolute 
value of the residuals, SRARs (its mean coincide with the 
variance of the residuals), applied them Box-Cox 
transformation to obtain normal distributions and finally 
applied a one-way ANOVA. Moreover, the Duncan’s test was 
applied to find subgroups of equivalent regression models. 

C. Behaviour of the sEMG parameters with noise. 
By adding zero-mean white Gaussian noise, we made a 

series of sets of our sEMG signals with different SNRs. We 
calculated all the parameters and obtained their Pearson 
correlation coefficients, which were plotted against SNRs. 
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Fig 2. Changes in Peak Power (mean ± standard error) during the 
5 sets of 10 repetitions. 

IV. RESULTS

A. Peak Power Output 
Muscle peak power output of the last repetitions of each set 

was significantly lower (p<0.05) than that recorded during the 
first two repetitions (Fig 2).  

B. sEMG indices 
The values of the wavelet indices and FInsm5 significantly 

increased (p<0.05) during the last five repetitions of each set 
and the first ones of the 3rd, 4th and 5th set compared to the 
values of the first five repetitions of the 1st set (Fig 3c, 3d, 3e, 
3f, 3g, 3h). The MAV and Fmed values of the last 5 
repetitions of each set were significantly (p<0.05) higher and 
lower (respectively) than that recorded during the first five 
repetitions of the 1st set (Fig 3a, 3b).  

Fig.3. Changes in sEMG parameters (mean ± standard error) during 
the 5 sets of 10 repetitions. a) Average MAV b) Median frequency c) 
Logarithm of Dimitrov’s index (FInsm5) d) Logarithm of WIRM1551 
e) Logarithm of WIRM1551 f) Logarithm of WIRW51 g) Logarithm 

of WIRE51 h) Logarithm of WIRM1522. 

TABLE I
CORRELATION BETWEEN SEMG PARAMETERS AND POWER OUTPUT

MAV Fmed Log-FInsm5 Log-
WIRM1551 

Log-
WIRM1M51 

Log-
WIRW51 

Log-
WIRE51 

Log-
WIRM1522 Peak Power 

MAV  -0.486** 0.576** 0.474** 0.680** 0.515** 0.502** 0.467** -0.506** 

Fmed  -0.537** -0.517** -0.602** -0.564** -0.560** -0.579** 0.435** 

Log-FInsm5  0.787** 0.884** 0.727** 0.742** 0.638** -0.518** 

Log-
WIRM1551  0.765** 0.945** 0.964** 0.917** -0.635** 

Log-
WIRM1M51  0.719** 0.719** 0.610** -0.576** 

Log-
WIRW51  0.994** 0.955** -0.683** 

Log- 
WIRE51  0.961** -0.674** 

Log-
WIRM1522  -0.650** 

Peak Power 
* Significant correlation coefficients p<0.05  
** Significant correlation coefficients p<0.01 
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C. Relationships between sEMG-based parameters and 
Peak Power Output 

Pearson correlation analysis revealed that the new wavelet 
indices showed greater correlations values [log-WIRM1551 
(R= -0.635; p<0.01); log-WIRM1M51 (R= -0.576; p<0.01); 
log-WIRW51 (R= -0.683; p<0.01); log-WIRE51 (R= -0.674; 
p<0.01) and log-WIRM1522 (R= -0.650; p<0.01)] with peak 
power than the other sEMG indices [MAV (R= -0.506; 
p<0.01), log-FInsm5 (R= -0.518; p<0.01) and Fmed (R=0.435; 
p<0.01)] (Table 1).  

Stepwise multiple linear regression analysis with muscle 
power changes as a dependent variable and the individual 
values of the different sEMG parameters obtained during the 
fatiguing dynamic protocol as independent variables showed 
that the log-WIRW51 as a single parameter predictor 
accounted for 46.6% of the performance variance of changes 
in muscle power, and the log-WIRW51 and MAV, as a two 
factor combination predictor, accounted for 49.8% of the 
performance variance of changes in muscle power, 
respectively. 

Fig. 4. Levene’s test. 95% Bonferroni confidence intervals for 
variances of the residuals of the regressions of the parameters. 

Levene’s test was significant (p<0.001) over the residuals, 
therefore the regressions can not be assumed equal. Fig. 4 
shows the confidence intervals of the distributions of residuals 
for each parameter. It can be appreciated that the wavelet 
indices are most similar among them and different from the 
rest of parameters. 

Significant differences (p<0.05) were obtained using one-
way ANOVA (Dunnet T3, N=686 values) from the SRARs 
among the regressions of Fmed and all the wavelet indices and 
between MAV and log-WIRW51. Therefore, wavelet indices 
are significantly better than traditional parameters as MAV 
and Fmed.  

Fig. 5 shows the mean of SRARs for each sEMG parameter 
and the four different homogeneous subgroups formed by 
Duncan’s test. The subgroups are formed by the parameters 
whose regressions could be considered equivalents. The first 
subgroup involves only the wavelet indices and in the second 
and fourth subgroups wavelet indices are present too. 

Fig.5. Mean of SRARs and homogeneous subgroups 
formed by Duncan’s test. 

D. Comparison of the automatic methods with different 
levels of noise  

In Fig. 6 we plot the Pearson correlation coefficients of the 
relative changes of all the indices used to estimate power 
output against different SNRs. The first two upper graphics 
corresponds to MAV and Fmed parameters. The next below is 
log-FInsm5, and the rest of the parameters are the new wavelet 
indices. It can be appreciated that wavelet indices are more 
robust against noise than the rest of the parameters, as their 
Pearson correlation coefficients are greater in the whole range 
of SNRs. These results can be explained as white additive 
Gaussian noise disturb the whole power spectrum of the 
sEMG signals, that is why log-FInsm5 is more affected by 
noise. Otherwise, wavelet indices are calculated in specific 
bands, therefore less noise is present in their values. 
Specifically, the best performance is achieved by log-
WIRM1522, as this parameter makes use of wavelet scale 2, 
which has less and lower frequency content than wavelet scale 
1, and therefore is less disturbed by noise. 

Fig. 6. Correlation coefficient between sEMG parameters and peak 
power with different SNR values. 
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V. DISCUSSION 
In agreement with previous works, this study in dynamic 

fatiguing exercise led to major muscle fatigue, as there was a 
shift of EMG power spectrum to lower components in 
amplitude and frequency.  

Fatigue-related decreases in muscle voluntary activation to 
maintain a given muscle power output (i.e. dynamic task 
failure) have been exclusively assessed by the measurement of 
the EMG signal during maximal voluntary isometric 
contractions [12]. During dynamic contractions, however, 
several factors, as the change in the number of active motor 
units, changes in force/power though the range of motion, and 
others [12], [24] and [25], may increase the non-stationarity of 
the sEMG signal. 

Therefore, the traditional parameters based on the fast 
Fourier transform, as mean or Fmed during dynamic 
contractions may not reflect muscle fatigue. 

A powerful time frequency technique as the DWT is more 
suitable to deal with non-stationary signals, as it has been 
shown in this work. Applying ratios of moments as Dimitrov 
and coworkers to different wavelet scales or other features as 
wavelength waveform outperforms the correlations with 
muscle power output, yielding better results than traditional 
parameters as MAV or recent as Log-FInsm5. Specifically, 
the log-WIRW51 can be considered as a sensitive index to 
assess muscle power fatigue after multiple sets of dynamic 
fatiguing high-power contractions, accounting for 46.6%-
49.8% of the performance variance of changes in muscle 
power output. Moreover, the changes in muscle power output 
can be explained using a regression model based only on the 
wavelet indices. On the other hand, these indices behave more 
robustly in presence of noise than other parameters.  
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