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New Stability Analysis for Neural Networks with
Time-Varying Delays

Miaomiao Yang, Shouming Zhong

Abstract—This paper studies the problem of asymptotically
stability for neural networks with time-varying delays.By establishing
a suitable Lyapunov-Krasovskii function and several novel sufficient
conditions are obtained to guarantee the asymptotically stability of

illustrate the effectiveness of the proposed main results.
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I. INTRODUCTION

RECURRENT neural networks including Hopfield neural

networks (HNNs) and cellular neural networks (CNNs)

and have been widely applied within various engineering fields

such as neuro-biology, population dynamics and computing

technology.Up to now,various stability conditions have been

obtained. But because of the hight speed of information

processing,there inevitably exist time-varying delays in neural

networks. Therefore, the problem of stability of recurrent

neural networks with time-varying delay is importance in both

theory and practice.

The problem of global asymptotically stability analysis for

delay neural networks has been studied by many investigators

in the past years. Through employing different Lyapunov

Krasovskii functionals and LMI technique stability criteria

were obtained. The following works have studied the global

asymptotically stability for delayed neural networks . In [5],

some sufficient conditions are obtained for existence and

global asymptotically stability of constructing a new Lyapunov

functional and using free-weighting matrix method,some more

less conservative criteria were obtained.In [11], By introducing

triple-integral terms and convex optimization approach,the

Motivated by these observations, it is of great importance to

further investigate the stabilization problem of delayed neural

networks by making use of the delay interval of neurons.

In this paper, our attention focuses on the asymptotically

stabilization problem of a class of recurrent neural networks

with time delay.By choosing a new Lyapunov functional which
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fractions delay interval and employing different free-weighting

matrices in the upper bounds of integral terms to guarantee

the stability of the delayed neural networks. It is shown that

this obtained conditions have less conservatism. Finally, a

numerical example is given to show the usefulness of the

proposed criteria.

Notation: Throughout this paper, the superscripts ′− 1′ and
′T ′ stand for the inverse and transpose of a matrix,respectively;

�n denotes an n-dimensional Euclidean space;�m×n is the

set of all m × n real matrices; P > 0 means that the matrix

P is symmetric positive definite, diag(. . .) denotes a block

diagonal matrix. In block symmetric matrix or long matrix

expression, we use (∗) to represent a term that is induced by

symmetry,I is an appropriately dimensional identity matrix.

II. PROBLEM STATEMENT

Consider the following neural networks with time-varying

delays:

ż(t) = −Cz(t) +Ag(z(t)) +Bg(z(t− τ(t))) + μ (1)

z(t) = φ(t), t ∈ [−τ2, 0] (2)

where z(t) = [z1(t), z2(t), . . . , zn(t)]
T ∈ �n is neuron

vector g(z(t))) = [g1(z1(t)), g2(z2(t)), . . . , gn(zn(t))]
T ∈ �n

denotes the neuron activation function, A ∈ �n×n, B ∈ �n×n

are the connection weight matrices and the delayed connection

weight matrices,C = diag{c1, c2, . . . , cn} > 0. respectively,

μ = [μ1, μ2, . . . , μn]
T is constant input vector, τ(t) is a

continuous time-varying function which satisfies.

τ1 ≤ τ(t) ≤ τ2, τ̇(t) ≤ u (3)

where τ1, τ2 and u are constants.

The following assumption is made in this paper.

Assumption 1. The neuron activation functions gi(t) in (1)
are bounded and satisfy

γ−
i ≤ gi(x)− gi(y)

x− y
≤ γ+

i , x, y ∈ �, x �= y, i = 1, 2, . . . , n

(4)

Where γ−
i , γ+

i (i = 1, 2, . . . , n) are positive constants.

Assumption 1 guarantees the existence of an equilibrium

point of system(1) [13].Denote that z∗ = [z∗1 , z
∗
2 , . . . , z

∗
n]

T is

the equilibrium point. Using the transformationx(·) = z(·)−z∗

system (1) can be converted to the following error system:

ẋ(t) = −Cx(t) +Af(x(t)) +Bf(x(t− τ(t))) (5)

the considered system. Finally,two numerical examples are given to

delays, Linear matrix inequality.

have been studied extensively over the recent decades [1]-[10]

results obtained were improved further than [5].
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where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ �n is the neuron

vector,f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]
T ∈

�n denotes the neuron activation function.

Let fi(x(t)) = gi(zi(·))− gi(z
∗
i ), i = 1, 2, . . . , n.we can get

γ−
i ≤ fi(xi(t))

xi(t)
≤ γ+

i , fi(0) = 0, i = 1, 2, . . . , n (6)

Lemma 1 [12]. For any constant positive matrix Z ∈ �n×n,

Z = ZT > 0, scalars h2 > h1 > 0 such that the following

integrations are well defined, then

−(h2 − h1)

∫ h1

h2

xT (s)Zx(s)ds ≤

−
∫ h1

h2

xT (s)dsZ

∫ h1

h2

x(s)ds

(7)

Lemma 2 [13].By (6) the following inequalities hold

0 ≤
∫ xi(t)

0

[fi(s)− γ−
i s]ds ≤ [fi(xi(t))− γ−

i xi(t)]xi(t)

(8)

0 ≤
∫ xi(t)

0

[γ+
i s− fi(s)]ds ≤ [γ−

i xi(t) + fi(xi(t))]xi(t)

(9)

III. MAIN RESULTS

In this section, we propose a new asymptotically criterion

for the neural networks with time-varying delays system. Now,

we have the following main results.

Theorem 1.For given scalars Γ1 = diag(γ−
1 , γ−

2 , . . . , γ−
n )

Γ2 = diag(γ+
1 , γ+

2 , · · ·, γ+
n ),u > 0, the system (5) is

globally asymptotically stability if there exist the

symmetric positive definite matrices P , Qi(i = 1, 2, 3),
Ri(i = 1, 2, 3), M1,M2, N1, N2. positive diagonal matrices

Λ = diag(λ1, λ2, . . . , λn), Δ = diag(δ1, δ2, . . . , δn), and

arbitrary matrices H1, H2,W1,W2, such that the following

LMIs hold:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 Q1 Q2 0 e15 e16 0
∗ e22 Q3 0 0 0 0
∗ ∗ e33 0 0 0 −H2

∗ ∗ ∗ e44 0 e46 0
∗ ∗ ∗ ∗ e55 e56 0
∗ ∗ ∗ ∗ ∗ e66 0
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (10)

e11 = −PC − CP − 2Γ2ΛC + 2Γ1ΔC +R1 +R2 +R3

+ CT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]C −Q1 −Q2 +M1

− 2Γ1W1Γ2

e15 = PA− CΛ− Γ1ΛA+ Γ2ΔA+ΔC +W1(Γ1 + Γ2)

− CT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]A+H1

e16 = PB − CT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]B

− Γ1ΛB + Γ2ΔB

e22 = −R1 −Q1 −Q2, e33 = −R2 −Q3 −Q2 −M2

e44 = −(1− u)(R3 +M1 +M2)− 2Γ1W2Γ2

e46 = −(1− u)(H1 −H2) +W2(Γ1 + Γ2)

e55 = 2AΛ− 2ΔA+AT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]A

+N1 − 2W1

e56 = BΛ−ΔB +AT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]B

e66 = BT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]B − (1− u)(N1 −N2)

− 2W2

Proof: Construct a Lyapunov-Krasovskii function as the

follows:

V (xt) =

4∑
i=1

Vi(xt)

where

V1(xt) = xT (t)Px(t) + 2

n∑
i=1

[

∫ xi(t)

0

λi(fi(s)− γ−
i s)ds

+

∫ xi(t)

0

δi(γ
+
i s− fi(s))ds]

V2(xt) =

∫ t

t−τ1

xT (s)R1x(s)ds+

∫ t

t−τ2

xT (s)R2x(s)ds

+

∫ t

t−τ(t)

xT (s)R3x(s)ds

V3(xt) = τ1

∫ 0

−τ1

∫ t

t+θ

ẋT (s)Q1ẋ(s)dsdθ

+ τ2

∫ 0

−τ2

∫ t

t+θ

ẋT (s)Q2ẋ(s)dsdθ

+ (τ2 − τ1)

∫ −τ1

−τ2

∫ t

t+θ

ẋT (s)Q3ẋ(s)dsdθ

V4(xt) =

∫ t

t−τ(t)

[
x(s)

f(x(s))

]T [
M1 H1

∗ N1

] [
x(s)

f(x(s))

]
ds

+

∫ t−τ(t)

t−τ2

[
x(s)

f(x(s))

]T [
M2 H2

∗ N2

] [
x(s)

f(x(s))

]
ds

The time derivative of V (xt) along the trajectory of system

(5) is given by

V̇ (xt) =

4∑
i=1

V̇i(xt)

where

V̇1(xt) = 2xT (t)Pẋ(t) + 2[(fT (x(t))− xT (t)Γ1)Λ]ẋ(t)

+ 2[(xT (t)Γ2 − fT (x(t)))Δ]ẋ(t)
(11)
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V̇2(xt) = xT (t)(
3∑

i=0

Ri)x(t)− xT (t− τ1)R1x(t− τ1)

− (1− τ̇(t))xT (t− τ(t))R3x(t− τ(t))

− xT (t− τ2)R2x(t− τ2)

≤ xT (t)(
3∑

i=0

Ri)x(t)− xT (t− τ1)R1x(t− τ1)

− (1− u)xT (t− τ(t))R3x(t− τ(t))

− xT (t− τ2)R2x(t− τ2)
(12)

V̇3(xt) = ẋT (t)[τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]ẋ(t)

− τ1

∫ t

t−τ1

ẋT (s)Q1ẋ(s)ds

− τ2

∫ t

t−τ2

ẋT (s)Q2ẋ(s)ds

− (τ2 − τ1)

∫ t−τ2

t−τ1

ẋT (s)Q3ẋ(s)ds

≤ ẋT (t)[τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]ẋ(t)

− [x(t)− x(t− τ1)]
TQ1[x(t)− x(t− τ1)]

− [x(t)− x(t− τ2)]
TQ2[x(t)− x(t− τ2)]

− [x(t− τ2)− x(t− τ1)]
TQ3[x(t− τ2)− x(t− τ1)]

(13)

V̇4(xt) =

[
x(t)

f(x(t))

]T [
M1 H1

∗ N1

] [
x(t)

f(x(t))

]
− (1− τ̇(t))

×
[

x(t− τ(t))
f(x(t− τ(t)))

]T [
M1 −M2 H1 −H2

∗ N1 −N2

]

×
[

x(t− τ(t))
f(x(t− τ(t)))

]
−

[
x(t− τ2)

f(x(t− τ2))

]T [
M2 H2

∗ N2

]

×
[

x(t− τ2)
f(x(t− τ2))

]

≤
[

x(t)
f(x(t))

]T [
M1 H1

∗ N1

] [
x(t)

f(x(t))

]
− (1− u)

×
[

x(t− τ(t))
f(x(t− τ(t)))

]T [
M1 −M2 H1 −H2

∗ N1 −N2

]

×
[

x(t− τ(t))
f(x(t− τ(t)))

]
−

[
x(t− τ2)

f(x(t− τ2))

]T [
M2 H2

∗ N2

]

×
[

x(t− τ2)
f(x(t− τ2))

]

(14)

From (6), there exist positive diagonal matrices W1,W2,such

that the following inequalities hold:

− 2fT (x(t))W1f(x(t)) + 2xT (t)W1(Γ1 + Γ2)f(x(t))

− 2xT (t)Γ1W1Γ2x(t) ≥ 0
(15)

− 2fT (x(t− τ(t)))W2f(x(t− τ(t))) + 2xT (t− τ(t))W2

× (Γ1 + Γ2)f(x(t− τ(t)))− 2xT (t− τ(t))Γ1W2Γ2

× x(t− τ(t)) ≥ 0
(16)

From (11)− (18) we can get

V (xt) ≤ gT (t)Eg(t) < 0 (17)

where

g(t) =[x(t), x(t− τ1), x(t− τ2), x(t− τ(t)), f(x(t)),

f(x(t− τ(t))), f(x(t− τ2))]
T

(18)

This means that the system (5) is asymptotically stable, which

complete the proof.

Remark 1.Theorem 1 gives a stability criterion for system

(5) with τ1 ≤ τ(t) ≤ τ2, τ̇(t) ≤ u, where u is a given

constant. In many cases, u is unknown.Considering this case,

there have the following corollary.

Corollary 1.For given scalars Γ1 = diag(γ−
1 , γ−

2 , · · ·, γ−
n )

Γ2 = diag(γ+
1 , γ+

2 , . . . , γ+
n ) , the system (5) is globally

asymptotically stable if there exist symmetric positive definite

matrices P , Qi(i = 1, 2, 3), Ri(i = 1, 2), M1,M2, N1, N2.

arbitrary matrices H1, H2,W1,W2, positive diagonal matrices

Λ = diag(λ1, λ2, . . . , λn), Δ = diag(δ1, δ2, . . . , δn), such

that the following LMIs hold:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 Q1 Q2 0 e15 e16 0
∗ e22 Q3 0 0 0 0
∗ ∗ e33 0 0 0 −H2

∗ ∗ ∗ e44 0 e46 0
∗ ∗ ∗ ∗ e55 e56 0
∗ ∗ ∗ ∗ ∗ e66 0
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (19)

e11 = −PC − CP − 2Γ2ΛC + 2Γ1ΔC +R1 +R2 +R3

+ CT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]C −Q1 −Q2 +M1

− 2Γ1W1Γ2

e15 = PA− CΛ− Γ1ΛA+ Γ2ΔA+ΔC +W1(Γ1 + Γ2)

− CT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]A+H1

e16 = PB − CT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]B

− Γ1ΛB + Γ2ΔB

e22 = −R1 −Q1 −Q2, e33 = −R2 −Q3 −Q2 −M2

e44 = −2Γ1W2Γ2, e46 = W2(Γ1 + Γ2)

e55 = 2AΛ− 2ΔA+AT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]A

+N1 − 2W1

e56 = BΛ−ΔB +AT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]B

e66 = BT [τ21Q1 + τ22Q2 + (τ2 − τ1)
2Q3]B − 2W2

Proof: Choosing R3 = 0,

[
M1 −M2 H1 −H2

∗ N1 −N2

]
= 0 in

Theorem 1,one can easily obtains this result.
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TABLE I
ALLOWABLE UPPER BOUND OF τ2 WITH VARIOUS u

u 0.6 0.8 0.9 1.2
[14] 2.9219 1.7428 1.3246 1.2165
[15] 2.9334 1.7557 1.3423 1.2323
[16] 2.9876 1.7750 1.3747 1.2612

this works ∞ ∞ ∞ ∞

TABLE II
ALLOWABLE UPPER BOUND OF τ2 WITH VARIOUS u

u 0.4 0.45 0.5 0.55
[17] 3.99 3.27 3.05 2.98
[18] 4.38 3.60 3.33 3.23
[19] 4.39 3.67 3.46 3.41
[20] ∞ ∞ ∞ ∞

Theorem 1 ∞ ∞ ∞ ∞

IV. EXAMPLES

In this section,we provide the simulation of examples to

illustrate the effectiveness of our method.

Example 1. Considering the system (5) with the following

parameters:

C =

[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1
1 1

]

Γ1 = diag(0, 0), Γ2 = diag(0.4, 0.8)

First,the maximum delay bounds τ2 are shown under τ1 = 0
and different u are list in Table I.

Example 2. Considering the system (5) with the following

parameters:

C =

[
1.5 0
0 0.7

]
, A =

[
0.053 0.0454
0.0987 0.275

]

B =

[
0.2381 0.9320
0.0388 0.5062

]

Γ1 = diag(0, 0), Γ2 = diag(0.3, 0.8)

Table II lists out the comparison results on the maximum delay

bound allowed via the methods in recent paper and our new

established criterion.

V. CONCLUSION

In this paper,a new stability analysis for neural networks

with time-varying delay is proposed. A suitable Lyapunov

functional has been proposed to derive some less conservative

delay-dependent stability criteria by using the free-weighting

matrices method and the convex combination theorem. Finally,

two numerical examples have been given to illustrate the

effectiveness of the proposed method.
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