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Abstract—In the previous multi-solid models,ϕ  approach is 

used for the calculation of fugacity in the liquid phase. For the first 
time, in the proposed multi-solid thermodynamic model,γ approach 
has been used for calculation of fugacity in the liquid mixture. 
Therefore, some activity coefficient models have been studied that 
the results show that the predictive Wilson model is more appropriate 
than others. The results demonstrate γ approach using the predictive 
Wilson model is in more agreement with experimental data than the 
previous multi-solid models. Also, by this method, generates a new 
approach for presenting stability analysis in phase equilibrium 
calculations. Meanwhile, the run time in γ approach is less than the 
previous methods used ϕ  approach. The results of the new model 
present 0.75 AAD % (Average Absolute Deviation) from the 
experimental data which is less than the results error of the previous 
multi-solid models obviously.  
 

Keywords—Multi-solid thermodynamic model, Predictive 
Wilson model, Wax formation. 

I. INTRODUCTION 
N the multi-solid model, it is assumed the solid phase (wax) 
consist of several pure component. The studies show two 

main models apply the concept of multi-solid model, 
including Lira-Galeana et al. [1] and Nichita et al. [2] models. 
The other multi-solid models are similar to them 
approximately.  

In 1996, Lira-Galeana et al. [1] presented an approach 
based on multi-solid model for the prediction of wax 
formation. In this model, a correlation was presented for 
estimating the melting point of pure components including 
normal paraffinic (C6-C30), naphthenic (C6-C30 
alkylcycloalkanes) and aromatic (C6-C30 alkylbenzenes) 
hydrocarbons. Also, they suggested a correlation for the 
estimating of the enthalpy of fusion. They used the Pedersen 
et al. correlation [3] to estimate the specific heat capacity 
difference between solid and liquid phase. Also, the term of 
solid-solid phase transition was ignored in the calculation of 
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fugacity ratio of the solid and liquid phase for a pure 
component. The PR EoS [4, 5] was used for the fugacity 
calculation in the fluid phases. 

In 2001, Nichita et al. [2] suggested a multi-solid model. In 
this model, the melting point temperature of normal alkanes 
was estimated from the correlation proposed by Won [6]. 
Also, they applied solid-solid phase transition term for the 
calculation of the fugacity ratio of solid and liquid phase for a 
pure component. They suggested correlations for estimating of 
temperature and enthalpy of solid-solid phase transition. The 
PR EoS [4, 5] was applied for calculating fugacity in the fluid 
phases.  

In this work, for the first time, a multi-solid model based 
onγ approach has been presented for the prediction of wax 
formation phenomena. Some activity coefficient models 
including the regular solution [3, 6, 7], UNIFAC [8-10], 
predictive UNIQUAC [11-13] and predictive Wilson [14] 
models and ideal solution approach have been employed and 
compared. For validating the proposed model some 
experimental data have been used which are for 56 
equilibrium data points.  

II. EXPERIMENTAL DATA 
In this work, four ternary systems including C14-C15-C16 

(ternary 1), C16-C17-C18 (ternary 2), C18-C19-C20 (ternary 3) 
and C19-C20-C21 (ternary 4) have been used [15]. These 
systems contain 56 mixtures that the amount of WDT (Wax 
Disappearance Temperature) in Kelvin (K) at atmospheric 
pressure and compositions of mixtures have been reported in 
Tables I-IV.    
 

TABLE I 
EXPERIMENTAL WDT (K) DATA FOR C14-C15-C16 TERNARY SYSTEM 1  

Composition (molar %) Mixture 
C14 C15 C16 

Exp. WDT (K) 

1 6 57 37 283.4 
2 14 26 63 284.6 
3 17 6 77 285.5 
4 24 33 43 282.2 
5 21 56 23 281.2 
6 27 66 7 280.4 
7 37 5 58 282.6 
8 32 24 44 281.5 
9 43 33 24 279.2 
10 57 17 26 278.0 
11 73 14 13 276.3 
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TABLE II 
EXPERIMENTAL WDT (K) DATA FOR C16-C17-C18 TERNARY SYSTEM 2   

Composition (molar %) Mixture 
C16 C17 C18 

Exp. WDT (K) 

1 10 10 80 297.8 
2 10 75 15 294.3 
3 10 80 10 294.6 
4 11 39 50 295.8 
5 20 20 60 295.8 
6 20 60 20 293.7 
7 33 33 34 293.3 
8 40 10 50 293.6 
9 40 40 20 291.9 
10 60 20 20 290.8 
11 80 10 10 289.5 

 
TABLE III 

EXPERIMENTAL WDT (K) DATA FOR C18-C19-C20 TERNARY SYSTEM 3   
Composition (molar %) Mixture 
C18 C19 C20 

Exp. WDT (K) 

1 2 2 96 309.0 
2 5 5 90 308.5 
3 5 90 5 304.7 
4 10 10 80 307.5 
5 10 40 50 306.3 
6 10 55 35 305.9 
7 14 73 13 304.4 
8 15 15 70 307.3 
9 20 20 60 306.3 
10 20 60 20 304.9 
11 26 26 48 305.5 
12 33 33 34 304.3 
13 40 10 50 304.6 
14 43 43 14 302.8 
15 48 15 37 303.8 
16 60 20 20 302.3 
17 79 11 10 301.4 
18 90 5 5 300.6 

 
TABLE IV 

EXPERIMENTAL WDT (K) DATA FOR C19-C20-C21 TERNARY SYSTEM 4    
Composition (molar %) Mixture 
C19 C20 C21 

Exp. WDT (K) 

1 5 5 90 312.9 
2 5 89 6 309.4 
3 10 40 50 310.9 
4 10 80 10 309.5 
5 12 10 78 312.1 
6 19 50 31 309.9 
7 20 21 59 310.9 
8 20 60 20 309.3 
9 29 28 43 309.7 
10 39 10 51 309.5 
11 39 50 11 307.8 
12 49 20 31 308.1 
13 50 40 10 307.4 
14 60 20 20 307.3 
15 80 10 10 306.0 
16 90 5 5 305.5 

 

III. THE MULTI-SOLID MODEL BASED ONγ APPROACH  

In the multi-solid model, the number of components 
precipitate should be obtained by stability analysis condition. 
The compounds cover this condition precipitates as a pure 
solid phase. The definition of stability analysis is in the 
following expression [16]: 

CiTPfZTPf PureS
ii

Z
i ,...,1     0),(),,( , =>−      (1) 

 
where, ),,( i

Z
i ZTPf , is the component fugacity in the 

mixture at pressure P , temperatureT and with mixture 
composition iZ . In (1), C , is the number of components. In 

all correlations in this paper, subscripts S , L and superscript i  
are referred to the solid and liquid phase and the number of 
components, respectively.  

By the definition of fugacity in γ approach, component 

fugacity in the mixture, ),,( i
Z

i ZTPf , can be calculated as 
follows: 
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In (4), L

iγ can be calculated using the activity coefficient 
models. To obtain a suitable activity coefficient model, the 
regular solution [3, 6, 7], UNIFAC [8-10], predictive 
UNIQUAC [11-13] and predictive Wilson [14] models have 
been applied reported in the Appendix. The ideal solution 
approach ( 1=L

iγ ) has been also considered. The fugacity 
ratio can be calculated as follows [2]:  
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The fusion temperature ( f

iT ) of normal alkanes is 
estimated from the following correlation proposed by Won 
[6]. 

 

i
i

f
i MW

MWT 201722617.05.374 −+=                    (6) 
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For the estimation of solid state transition temperature 
( tr

iT ), Nichita et al. proposed the following correlation [2]: 

i
i

tr
i MW

MWT 2087903609.039775.366 −+=                (7) 

In (6) and (7), T is in K, and MW is the component 
molecular weight. For the calculation of fusion and the solid-
solid transition enthalpy of normal alkanes, Nichita et al. 
suggested the following correlations for 282>iMW  (gr/mol) 
[2]:  

 
f

ii
f

i TMWH 1186.0=Δ                              (8) 
 

tr
ii

tr
i TMWH 0577.0=Δ                              (9) 

 
and for 282<iMW  (gr/mol), Nichita et al. expressed the total 
enthalpy (fusion+ solid state transition) by the following 
correlation [2]: 

 
f

ii
t
i TMWH 1777.0=Δ                         (10)    

 
In (8) to (10), HΔ is in cal/mol. For calculation of heat 

capacity difference between solid and liquid phase, ipC  Δ , the 

following correlation proposed by Pedersen et al. have been 
applied [3]: 

 
TMWMWC iiip

4
 10635.43033.0 −×−=Δ                    (11) 

 
that iPC  Δ and T are  in cal/mol.K and K, respectively. 

For precipitating components the thermodynamic 
equilibrium can be written as follows [1, 2, 16]: 
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where, sC  is the number of precipitating components. By 
using the stability analysis correlation, (4), and material 
balance for precipitating and non-precipitating components, 
the mole fraction and composition of solid phase can be 
obtained. The algorithm and material balance equations have 
been reported in the literature [16].  

IV. RESULTS AND DISCUSSION 
The results of calculations have been reported in Table V. 

This table shows the new multi-solid model using predictive 
Wilson model gives better results in comparison with other 
activity coefficient models and ideal solution approach and the 
previous multi-solid models. Figs. 1-4 show the results of 
calculations with new multi-solid model by using the 
predictive Wilson model. 

 
 

 

TABLE V 
THE RESULTS OF CALCULATIONS 

Ternary systems 1 2 3 4 Total 

No. of data points 11 11 18 16 56 

Models AAD %a 

Lira-Galeana et al. 
(1996) [ ]  16.26 13.11 10.85 10.66 12.30 

Nichita et al.  
(2001) [ ] 1.17 1.00 1.07 1.63 1.24 

New Model 
1=γ  1.17 1.00 1.08 1.63 1.24 

New MS model 
Regular solution 1.17 1.00 1.08 1.63 1.24 

New MS model 
UNIFAC 1.18 1.00 1.08 1.63 1.24 

New MS Model 
P. UNIQUAC 0.91 0.72 0.87 1.37 0.99 

New MS model 
P. Wilson 0.51 0.49 0.66 1.19 0.75 

 a 
∑

−
=

n

i i

ii

Exp
ExpCal

n
AAD 100%
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Fig. 1 The results of calculation by new multi-solid model and 

predictive Wilson model in ternary 1 (C14-C15-C16) 
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Fig. 2 The results of calculation by new multi-solid model and 

predictive Wilson model in ternary 2 (C16-C17-C18) 
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Also, Table VI indicates the Nichita et al. and new multi-
solid models give better results than the Lira-Galeana model 
strongly. It proves that the consideration of solid-solid 
transition term is required for the calculation of solid-liquid 
phase equilibrium based on the concept of multi-solid model 
for prediction of wax formation phenomena.  
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Fig. 3 The results of calculation by new multi-solid model and 

predictive Wilson model in ternary 3 (C18-C19-C20) 
 

1 3 5 7 9 11 13 15 17
300

302

304

306

308

310

312

314

316

Number of mixture

W
D

T 
(K

)

Experimental data
New multi-solid model
and using predictive Wilson

 
Fig. 4 The results of calculation by new multi-solid model and 

predictive Wilson model in ternary 4 (C19-C20-C21) 

V. CONCLUSION 
In the previous multi-solid models for the prediction of wax 

precipitation phenomena, the equation of state has been used 
for calculation of fugacity in the liquid phase. For the first 
time, in this work, activity coefficient models have been 
applied for the stability analysis and fugacity calculation. The 
results show that this approach is better than that one uses the 
equation of state. Also, the run time of new method is less 
than the previous models.      

APPENDIX 

A. Activity Coefficient Models 
1) Regular Solution Theory [6, 7] 
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In this approach, the liquid and solid molar volumes are 
assumed to be equal. Therefore, 
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For estimation of the liquid density of each component at 
25◦c ( L

id 25,
), the following correlation depending on molecular 

weight is used [3]: 

i
i

L
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MWd 06.13106272.08155.0 4
25, −×+= −          (6) 

Solubility parameters in the liquid and solid phases 
( L

iδ and S
iδ ) related to carbon number ( inC  ) are calculated 

by (7) and (8) suggested by Pedersen et al. [3]: 
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L
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2) UNIFAC [8] 
For mixtures containing alkanes only, the following 

correlation is used [8]: 
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Z  is the coordination number. For orthorhombic molecular 
structure is set to 6 and iθ , the area fraction, and iϕ , the 
segment fraction, are obtained from the following 
correlations: 

∑
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j
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International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:1, No:5, 2007

60

 

 

∑
=Φ

j
jj

ii
i rx

rx
                                   (11) 

The values of molecular size parameter, ir , and molecular 

external surface parameter, iq , have been obtained from the 
Esmaeilzadeh et al. correlations [9-10]: 

4534.06744.0  += ini Cr                         (12) 

616.054.0  += ini Cq                           (13) 
 

3) Predictive UNIQUAC [11, 12] 
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In this equation, the jiλ is the interaction energy. Similar to 

UNFAC, iθ and iΦ are calculated by (10) and (11). The 
correlations for the r and q values with the n-alkane chain 
length are [13]: 

00996.00148.0 += nii Cr                        (16) 

0211.00185.0 += nii Cq                         (17) 

The interaction energy, iiλ  is estimated from the heat of 
sublimation of pure orthorhombic crystal, 

( )RTH
Z isubii −Δ−=  
2λ                          (18) 

with Z being the coordination number. For the orthorhombic 
crystals, the value of 6 is considered for Z [11, 14]. The 
interaction energy between two non-identical molecules is 
given by: 

jjjiij λλλ ==                                 (19) 

where j is the n-alkane with the shorter chain of the pair ij .  
Heat of sublimation can be calculated by: 

tr
i

f
i

vap
i

sub
i HHHH Δ+Δ+Δ=Δ             (20) 

where vaporization enthalpy is assessed using the PERT2 
correlation by Morgan and Kobayashi [17]. The critical 
properties needed in Morgan and Kobayashi correlations can 
be calculated by Twu correlations [18]. trHΔ , is calculated by 
the following correlation: 

ftottr HHH Δ−Δ=Δ                            (21) 

654.127791.3 −=Δ ntot CH                         (22) 
 

4) Predictive Wilson [14] 
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Similar to the predictive UNIQUAC approach, ijλ is 

calculated and the value of 6 is considered for Z . 

NOMENCLATURE 
Symbols 
C    number of component 

nC       carbon number 

pC   specific heat capacity 

d   density 
f   fugacity 

H   enthalpy 
i   counter  of component 
MW   molecular weight 
P   pressure 
q   molecular external surface parameter 
r   molecular size parameter 
R   gas universal constant  
T    temperature 
V   volume 
x   mole fraction 
Z   coordination number 

fZ          feed composition 

 
Greek letters 
Δ    variation 
γ    activity coefficient 

δ    solubility parameter 

δ    average solubility parameter 
ϕ    volume fraction 
Φ    segment fraction 
θ    area fraction 
Λ   interaction parameter 
λ   interaction energy 
τ   characteristic energy parameter 

 
Superscripts 
L    liquid 
S   solid 
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Subscripts 
C    critical 
F            feed 
f          fusion 
i            component number 
j           component number 
n    component number 
sub   sublimation 
tot    total 
tr    transition 
vap       vaporization  
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