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Abstract—We investigate the formulation and implementation of
new explicit group iterative methods in solving the two-dimensional
Poisson equation with Dirichlet boundary conditions. The methods
are derived from a fourth order compact nine point finite difference
discretization. The methods are compared with the existing second
order standard five point formula to show the dramatic improvement
in computed accuracy. Numerical experiments are presented to
illustrate the effectiveness of the proposed methods.
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1. INTRODUCTION

E study the finite difference discretization schemes for
approximating the solution of the two-dimensional
Poisson equation given by

U, +u, =f(x,») (1)

defined in a unit square domain Q with Dirichlet boundary
conditions. Assume (1) as our model problem and then

. . . . . 1.
discretize Q with uniform mesh size 4 =— in both x and y
n

coordinate directions, where x, =ih, y;=jh

(i,j = 0,1,2,~~~,n). In the sequel, we use the index pair (i,j)
to represent the mesh point (x,., yj) . There are various ways to

discretize (1). The most familiar scheme is based on the fourth
order compact (nine point) formula,

u +u,
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+ 4(u[+1’j tu,; tu
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)—20u, ; )

i,j+1
(8f;,j +f;+l,/ + i-l,j + i,j+1 +f;,[7l)'

Equation (2) is generally called Mehrstellenverfahren and
has been known for many years [5], [6]. This popular finite
difference approximation was developed by Collatz [5] and
implemented by Houstis and Papatheodorou in a Fortran
Program FFTO [3].

The second order group iterative method that Evans
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proposed in 1985 is called the Explicit Group (EG) method
[1]. The Modified Explicit Group (MEG) iterative method for
solving large linear systems was initiated by Othman and
Abdullah [8]. Further investigations on group iterative
methods have been extensively conducted by Evans and
Yousif [2], [11], Martins, Yousif and Evans [7], Othman and
Abdullah [9]. The fourth order EG and MEG methods may be
constructed by using (2). The MEG method is found to be
more superior in execution timings than the EG method.

The aim of this paper is to study the performance of higher
order group iterative methods derived from the nine point
formula (2). The paper is organised in four sections. In Section
II, we show the formulation of the algorithms for group
iterative methods. Numerical experiments on the specific
Poisson equation have been carried out and the results are
shown in Section III. Concluding remarks are given in Section
Iv.

II. EXPLICIT GROUP ITERATIVE METHODS

Applying (2) to groups of four points will result in the
following (4x4) system

20 4 -4 -1 w, b,
74 20 71 74 ui+l,j _ bi+l,j (3)
~4 -1 20 4|l u, | | by,

-1 -4 -4 20| u, ;. bi+l,/+1

where
b;.j = 4”1—1,;/ + 4”:‘.,7‘—1 FU o F U Uy
Jx:
- 7(8fz] + fi+1,j + f:—l,j + -fi.j+] + fi,/—l )
bm,j = 4ui+2,j + 4””1,/71 F Ui T U U
e
- 7(8](;44,]' + ff+2,, + f,] + fi+1,j+1 + fi+1‘j71)
bl‘j*»l = 4ui*l.j+l + 4”i,,+2 F Uiy Tl T UL o
JE:
77(8](@/41 + fi+l,/’+l + fi—l,j+1 + -ft,/+2 + fi,/)
bx+],j+l = 4ui+2,/+] + 4ui+],j+2 FUig o Tl U
Jx:

(8 + S+ Foga + fjia  Siny)

The system (3) can be inverted to produce a four-point EG
equation
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The algorithm of the EG method which represents the
fourth order compact nine point formula (2) in solving Poisson
problem (1) is illustrated in Algorithm I.

ALGORITHM |
ALGORITHM OF THE EG METHOD

e
So = Uiy 77(8/?1 +.f;+L/ +ffo, +fuﬂ +f,,,71)

Sp, =u, . +u

i1 T Uiy
Sos = Ui U
S04 Sl TU G,

Sps = Uiy jor TU o

s .
Sos Ui o 77(8f,+1,/+1 +-fi+2./+1 +/i./‘+l + i+, 42 +fm,,)

Sy = Uiy F Uiy i

+u,

Sos =1, i42,j

i+1,j-1

/R
Sp9 = Upr i 77(811“,/ +fi+2,j +fi,/ +j[i+l‘/+l +f1+|,/71)
S]O U tu
S

i+1,j+2

=u +u

11 i1+ ij+2

»
S,z =Uy i *7(8]0.',,41 +f‘+1,]+1 +f171,/‘+l +fn/+2 +ft~/)
Toy = So1 + Sps
Ty, =S + S0,

U, = ﬁ(l 168, +4925,, + 2288, + 28T, +129S,, +96S,; +17S,)

Uy, = #79(28%] +2285,, +4928,, +1168,, +1295,, +96S,, +175,,)

Uy 1 = ﬁ(zsrm +1298,; +968,, +178,, +2285,, +4925,, +116S,,)
1

Uiy = 2079

(175, +968,, +1295,, +28T,, +228S,, +4928,; +1165,,)

We modify the EG method by considering points at grid

. 2 ) L
size 2h =—. The construction of the MEG method is similar
n

to the original EG method. We first discretize (1) using the
same formula (2) with grid spacing 24 which leads to the
following formula,

u +u,

2,2 TU;

i+ TUY;

i+2,j+2 i=2,j-2

i,j+2 )720141‘,/ )
=20 (81, + oy * fray + S+ foa):

+ 4(u,.+2,j FU U, Y,

i,j-2

Now we use (5) to groups of four points and generate the
following (4x4) system

20 4 -4 -1 uy C;
=4 20 -1 4| Uy, Ciaj 6)
-4 -1 20 4| u,, Ciia

-1 -4 -4 20 u[+2,j+2 Ci+2,j+2

with
iy =y AU F U U U
2
—2h (SfiJ + f[+2,/ +f[72,/ +<fzj<j+2 + i,j—2)
Cipaj = 4”i+4,j + 4ui+2,j—2 F Uiy g T T UL,

-2h’ (8ﬁ+2,j + fzt+4,j + fz, + fi+2,j+2 + fi+2,j—z)

Cijor =AUy oy T AU oy F Uy g F U F U
2
=2h (8fi,j+2 + fi+2,j+2 + f;—z,j+2 + i,j+4 + fz/)
Civnje2 = 4”i+4./+2 + 4ui+2,j+4 F Uy s Tl TU

2
- Zh (8ﬁ+2,j+2 + f;+4,j+2 + f;,j+2 + .fi+2,j+4 + f;+2,j)

The system (6) can be inverted to give a four-point MEG
equation

u; 116 28 28 17 oy

U _ 1 28 116 17 28 || ¢y o
Ui i 2079 28 17 116 28 Ci 2
Uiir jio 17 28 28 116\ ¢ 00

The algorithm of the MEG method which computes the
approximate solution of Poisson problem (1) is mentioned in
Algorithms II. Figs. 1-3 show the discretization points of a
unit square domain with n = 14 and the various types of points
involved. It is obvious that MEG method involved only one
quarter of the interior points in its iteration process. After
convergence is achieved, the remaining points are solved
directly once.
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Fig. 1 MEG Step 1: Iterate on the points of type @ using MEG Fig. 3 MEG Step 3: Evaluation at OO , and points directly once
formula using the Compact Fourth Order formula (with spacing /)
ALGORITHM II
ALGORITHM OF THE MEG METHOD
A d A NI NI A d Iterate'
R . . ., W ‘ . s R . ‘ ., .
O @) O O o) O MEG:
é h hd h i b Sop =y 5, 2 2 (Sff., + Ji +ff—z,/ + fl,/+z + fl‘/—z)
@ o @ o @ - S = '/"“‘
6 oot ool oo i
A N S04 Uiy +u; j+4
' ' ' . . ‘ S(]S Uiy oo T U g
:3 c) <) () () (} { Spe = ”4_/.‘472h‘(8f,.‘2‘/.‘2+ :\4./>2+f;./42+f;-2./44+-fx\2,/‘)
S07 ) TUy, j+2
. ® ®- @ 9 — L K Sog =Upp jy Ty
) - . § .. B i . ‘ ‘
() () () () C> () () i(w U0 -2h (8./{”2,] +f;+4,j +.fl,j +.f,+zd+z +-f;*2,_/f2)
0 = Uin; TU,
a @ ® . 3 ® L : a ® @ . S, = Uiy jio Tl jig
O O O O O O O— Sy =t =20 (Sff,m S TS t Lt ft,)
Ty, =Sy + Se
‘ . I 3 ® ‘ . . Toz = Sog + Slz
O O O O 0O {
r T T T T T U, = 3575 (1168, +492S,, + 2285, + 287, +1295,+965), +175,)

Fig. 2 MEG Step 2: Evaluation at @ and O points directly once Uy y = 5= (28T, +228S, + 4925, +1168,, +1295,, +965,, +17S,, )

using Rotated Fourth Order formula (with spacing /)

2079

u,AJ+2:2079(28T +1295,, +96S,, +175,, +2285,, +4925,, +1165,,)

s o2 = 5070 (175 +965,, +1295,, +28T,, +228S,, +4925,; +1165,,)
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After convergence is achieved:

Rotated Fourth Order: (with spacing /)

Boundary Down:
18 13 17
+4”x/ 1 Tuul,_ﬁl +Z“x+1._;71 +7 i1, j+1 +3u, j-1
1
+ Z(“wx,/n F Uiy o Tl ey T U ) 2w,
) 1
=h 8f;[ +f;+l jor T i + f, 1,j+1 +f1 1j-1 1/  t 2(f;+2.,, +f,.,,+z)
Boundary Up:
3 l7
Uiyt +4u,;+| Z 41,41 +3u,_ Lo Tt 4 Ui jm1 +4u, 1,j-1
1
+ Z(”m./f! Tl ) —2lu,

1
= {Sf,.] +f,+l,j+1 + fm,H +f,4‘,+1 +f,fl.,,fl 7fx,1+1 +Ef,+2,,,]

Boundary Left:

17 13
U oo T AUy Uy g F U+l 3U
4 4 4
1
+Z( i3t T Uiy o Tl st ”H,ﬁs)_ 21”:,_,

= hz [SJ‘,',,‘ +J‘f+l.,+1 +.f:+l,/—l +.f‘—l.,+1 +./‘,71,/—| _.fkl,/‘ +E(.f‘+2,/ +.f‘,/+z ))

Corner Right-Up:

Uiyt ,+ 4( Ui TU ) +4u, L T 3("‘”1.‘,71 Uy g ) + 2ux+l,_/+l - 22”:4
=h (S.ff,/' + fHI.JH + ./‘m,/—l + .fﬁl,]ﬂ + f‘—l,j—\ _fm,, - f;,j+| )

Inner:

17

18
Uiyt Uy, +X”i+1,/+1 +— 4 ( Uy oy T U 1/+1)+4”1 1,j-1

1
+Z( i3 TUigs o H U s T UL s ) - 20”;‘.;,

. . . . 1 .
=n (8./‘1‘,‘ +./‘u1,/+1 +f,+1,,>1 +.fﬁ|¢+1 +ff71,,>1 +E(f,+z./ +.//‘./+2 )j

Compact Fourth Order: (with spacing /)

a
Boundary Down & Inner:
1
Uiy ja +u,_ 1,j-1 +Z(”1+2,j+| +u,+1,,+2 + Ui s +“172,J+1 ) +4u1471
9 17
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+4( Ui ur./fl)+7 +2u +£
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[Sf, j +f,+1 j+l +fz+|, 1 +f, 1,j+1 +fx 1,j-1 f,+| J _fi,/fl +Ef,,/+z]

Corner Left-Up:

Uy T 3“1444

13 17
Uija +4(u,714 +“,A,+1)+j i+, j+1 +2u, 1,j+1 +j

+ 41‘( r+3/ 1 +u1+3,,ﬂ)—22u1./
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Boundary Left:

1
Uiy j +u; 1,j+1 + Uiy + Z(“w;,n + Uiy jea ) + 4(”171.1 + ul,_/fl)

'*'%7(”141,,, + ,M) 20u, ;
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1
Uy jo F Ul jog H U o T 4(“14._”2 T, ;+1)+4( Uiy j u,,H)

+%(u,;w + ,M) 20u

= %[Sf” +fi+1,j + .fi—l,j + .fx‘,j+l + fz,rl +%(.f,71,1+| )J
A

Boundary Up:

Uy o F Ui o F Uy g T U +4( oy Pl T U T U 1) 20“

n
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III. NUMERICAL EXPERIMENTS AND RESULTS

In this section, numerical results for the scheme presented
in the previous sections are given. The Successive Over-
Relaxation (SOR) was the accelerator used in the iterative
methods. The theoretical optimum relaxation factor w, for
the SOR iterative scheme can be computed from

_ 2 ®)

O =
T 1 y1-p*(B)
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where p (B) is the spectral radius of the Jacobian iterative
matrix [10]. The rate of convergence for the iterative methods
is relied on the spectral radius. The smaller p, the faster
convergence [4].

All numerical experiments were carried out on a computer
with processor Intel(R) Core(TM) 2 Quad CPU Q9400 @
2.66GHz and 3.00GB of main memory (RAM). Our code is
written in C++ programming language. We used the following
two test problems on a unit square to test the performance of
the higher order explicit group methods for different values of
n.

Problem I: The problem can be written as

2 2
644_% =977 (sin(37rx)+cos(37ry)),

ox? 9)

(x,y)eQ=[0,1]x[0,1],
where the boundary conditions are

u(x,O)zsin(37rx)+1, u(x,l):sin(Sﬂx)—l,
u(O,y) = COS(37I)/), u(l,y) = cos(37zy).

The analytic solution of (9) is
u(x,y)=sin(37x)+cos(37y).
Problem II: We choose the following equation:

ﬂ+@: (2x2 +2y2)(ex +ey) 4 e"+¢e” _ 2xe’ +2ye"
o’ o (l-k)cy)3 1+xy (1+xy)2 ’ (10)
(x,y)e=[0,1]x[0,1],

which has the Dirichlet boundary conditions:

u(x,0)=¢"+1, u(x,l):elx_'—e,
+x

e+e’
1+y '

u(O,y):l-%—e”, u(l,y):
The exact solution of this problem is

e +e’
I+xpy

u(x.y)=

To ensure a fair comparison is attained, all the iterations

were initiated from the same initial values u,.‘jo) and the

computations were terminated when the same convergence
test was satisfied with tolerance ¢ = 102, The programs
terminated when the Euclidean norm (2-norm) of the residual
vector is reduced by 10"2. The maximum absolute error
reported is the maximum absolute error between the computed
solution at convergence and the exact solution over all grid
points. The results show the number of iteration (k), value of
w, maximum absolute error (e), execution time (¢) in seconds

and the order of accuracy (m) [12].

TABLE I
PERFORMANCE COMPARISON ON PROBLEM I

Methods n 0] k t e m

8 145 39 0.00 2.53516¢-001 -
Second 16 1.68 79 0.00 6.47435¢-002  1.96927
Order 32 182 158 0.03 1.60236e-002  2.01454

(Standard

Five 64 191 325 0.19 3.99585¢-003  2.00362
Point) 128 195 651 1.56 9.99040¢-004  1.99989
256 198 1535 1591 2.49720e-004  2.00023

8 143 38 0.00 1.75785¢-002 -
Compact 16  1.66 75 0.00 1.12369¢-003  3.96750
Iz;’r“df;? 32 181 151 0.01 6.95049¢-005  4.01499
(Nine 64 190 298 0.22 4.33286¢-006  4.00372
Point) 128 1.95 610 1.79 2.70819¢-007  3.99992
256 197 1368 17.05 1.74676¢-008  3.95458

8 133 28 0.00 1.75785¢-002 -
Fourth 16 1.57 54 0.00 1.12369¢-003  3.96750
Order 32 176 109 0.01 6.95049¢-005  4.01499
EG (Nine 64 1.87 214 0.16 4.33284¢-006  4.00373
Point) 158 193 451 1.39 2.70827¢-007  3.99987
256 1.97 973 12.67 1.69233¢-008  4.00029

8 112 16 0.00 3.26688¢-001 -
Fourth 16 133 28 0.00 1.75785¢-002  4.21603
%rgeGr 32 157 54 0.00 1.12369¢-003  3.96750
(Nine 64 176 109 0.02 7.27410e-005  3.94933
Point) 128 1.87 214 0.16 4.59156¢-006  3.98571
256 1.93 451 1.37 2.87502¢-007  3.99734

We first compare the Second Order Standard Five Point
formula (FPF) with the Fourth Order Compact Nine Point
formula (NPF). We also investigate the computational cost
(CPU time) required for computing an approximate solution
with a given accuracy. Tables I and II contain the results.

TABLE II
PERFORMANCE COMPARISON ON PROBLEM II

Methods n ) k t e m

8 145 39 0.00 4.28755e-004 -
Second 16 168 g0 0.00 1.11086¢-004  1.94848
(S?a;dg; g 218 e 0.03  2.80023¢-005 1.98806
Five 64 191 320 0.19 7.01780e-006  1.99645
Poinyy 128 195 684 1.62 1.75520e-006  1.99938
256 198 1536 15.94 4.38912¢-007  1.99963

8 144 38 0.00 9.29910e-006 -
CFompalft 16 1.66 78 0.00 5.84471e-007  3.99189
(‘)’r“dr;r 32 1.8 157 0.03 3.65783¢-008  3.99807
(Nine 64 190 310 0.22 2.17991e-009  4.06865
Pointy 128 195 616 1.83 1.30212¢-010  4.06533
256 198 1403 17.85 9.33387¢-012  3.80224

8 133 28 0.00 9.29909¢-006 -
Fourth 16 157 55 0.00 5.84479¢-007  3.99187
Order 32 176 109 0.02 3.65789¢-008  3.99807
EG(Nine 64 187 215 0.17 2.28563¢-009  4.00035
Point) 128 193 480 1.51 1.18647¢-010  4.26784
256 197 978 12.84 9.29701e-012  3.67377

8 112 16 0.00 1.61035¢-004 -
Fourth 16 1.33 28 0.00 1.18586e-005  3.76337
‘I\)Argg 32 157 55 0.00 8.57168¢-007  3.79021
(Nine 64 1.76 109 0.02 6.48277¢-008  3.72490
Pointy 128 187 215 0.16 4.66644¢-009  3.79622
256 193 480 1.45 3.17236e-010  3.87869
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NPF achieves significantly better accuracy than FPF for the
same values of n. The CPU times are comparable, which NPF
is remarkably better than FPF. If we seek a required accuracy,
NPF converges with less iterations and far fewer execution
time by doing calculations. For example from Table I, FPF
achieves a maximum absolute error around 3.99585x107 with
the cost is 0.19 CPU seconds. The computational cost of NPF
is 0.00 CPU seconds for a similar value of error. In all cases,
NPF costs less CPU time than FPF, and achieves higher
accuracy.

According to Tables I and II, we note that the errors of all
fourth order iterative schemes (NVPF, EG and MEG) decay by
a factor of 16 and the errors of FPF decrease by a factor of 4
when 7 is doubled. The maximum errors of NPF and EG do
not vary very much. EG is going faster than NPF to obtain the
same accuracy.

From the results obtained, it can be observed that the MEG
method performs better than all iterative methods in terms of
number of iterations and execution times in all of the cases
tested. MEG converges the fastest among the iterative
methods tested which is due to its lower computational
complexity in the iterative process. The iterative process for
the MEG scheme is carried on one quarter of the total nodal
points, while the remaining points are solved directly once
after convergence is achieved.

The values of @ can be used to calculate p by applying (8).
We rearrange (8) to obtain p in the form

p= 1—(5—1j2. (an

[

The numerical results of p are shown in Table III.

TABLE 111
PERFORMANCE COMPARISON ON SPECTRAL RADIUS, p
Problem I Problem I1
Methods n 2] P n (2] P
8 143 091712 8 1.44 092128
16 1.66 097880 16 1.66 0.97880
Compact Fourth Order 32 1.81 0.99448 32 1.82 0.99510
(Nine Point) 64 190 09981 64 190 0.99861
128 195 0.99967 128 1.95 0.99967
256 197 0.99988 256 1.98 0.99995
8 1.33  0.86384 8 1.33  0.86384
16 157 096176 16 1.57 0.96176
Fourth Order EG (Nine 32 1.76 099066 32 1.76 0.99066
Point) 64 1.87 099758 64 1.87 0.99758
128 193 0.99934 128 1.93 0.99934
256 197 0.99988 256 1.97 0.99988
8 1.12 0.61859 8 1.12 0.61859
16 133 0.86384 16 133 0.86384
Fourth Order MEG (Nine 32 1.57 096176 32 1.57 0.96176
Point) 64 1.76 099066 64 1.76 0.99066
128 1.87 0.99758 128 1.87 0.99758
256 193 0.99934 256 1.93 0.99934

Clearly it has been seen that for the same values of n, the

spectral radius of MEG method is the smallest among three
iterative methods. The spectral radius of EG method is slightly
fewer than NPF in both test problems, thus verifying our
findings in CPU times. Smaller p will result in faster
convergence rate [4].

IV. CONCLUSIONS

Through numerical experiments, we have shown that the
higher order of point and group iterative methods can be
applied successfully with SOR in solving simpler type of
partial differential equations. Among all iterative methods,
MEG requires the least CPU times to converge, while NPF
appears to be the most expensive in terms of execution times.
NPF and EG give much higher accuracy than FPF and MEG.
All of our tests show that EG is much more efficient than NPF
in terms of CPU times and number of iterations.
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