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Abstract—New graph similarity methods have been proposed in 

this work with the aim to refining the chemical information extracted 
from molecules matching. For this purpose, data fusion of the 
isomorphic and nonisomorphic subgraphs into a new similarity 
measure, the Approximate Similarity, was carried out by several 
approaches. The application of the proposed method to the 
development of quantitative structure-activity relationships (QSAR) 
has provided reliable tools for predicting several pharmacological 
parameters: binding of steroids to the globulin-corticosteroid 
receptor, the activity of benzodiazepine receptor compounds, and the 
blood brain barrier permeability. Acceptable results were obtained 
for the models presented here. 
 

Keywords—Graph similarity, Nonisomorphic dissimilarity, 
Approximate similarity, Drug activity prediction.  

I. INTRODUCTION 
INCE the development of the Graph Theory, chemists have 
shown a great interest in the representation of 2D 

chemical structures by means of graphs. Arisen from this 
representation, several applications of graphs in the analysis 
and solution of chemical problems have been carried out, 
namely: quantitative structure activity/property relationships 
(QSAR/QSPR), query methods against large databases of 
chemical compounds, etc. [1],[2]. 

Studies of similarity between chemical structures can be 
also overtaken using graphs. There are two stages involved in 
classical similarity calculations: 1) isomorphic subgraphs 
detection and extraction; and 2) similarity computation taking 
into account the number of isomorphic nodes and edges (those 
nodes and edges common to the two matched graphs) [3]. 
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The use of graph similarity measurements for the 
development of QSAR methods is a work topic aimed at 
obtaining tools for predicting the pharmacological activity of 
drugs. Based on the “structurally similar molecules show 
similar properties and biological activities” chemical principle 
[4], graph similarity provides QSAR tools characterized by 
simplicity and fastness. 

In order to improve the accuracy and precision of chemical 
predictions, we propose a new graph similarity measurement, 
the Approximate Similarity (AS), which overcomes 
disadvantages related to the non consideration of 
nonisomorphic subgraphs in the similarity calculation [5]. 
Thus, the AS value merges isomorphic and non isomorphic 
information into a more real similarity value since the 
difference between the subgraphs which do not form the 
isomorphism is employed for correcting classical similarity 
values. 

Other two developments also aimed at improving the 
predictive ability of similarity measurements are presented. 
First, we propose the use of topological invariants for 
describing both the isomorphic subgraphs and the complete 
graphs employed in the classical similarity calculation. Thus, 
the type and nature of the nodes and edges (atoms and bonds) 
are considered instead of the simple approach which takes into 
account only the number of both nodes and edges. 

Second, we have developed a new isomorphism detection 
method which also computes the nodes and edges bridges 
between the isomorphic and nonisomorphic subgraphs, in 
addition to common substructures. This new method allows us 
to consider the position and nature of substituents, which are 
keys for the pharmacological activity of chemical structures. 

This work has been organized as follows: after the 
introductory section, a general description of the approximate 
similarity concept is given in section 2. Section 3 shows the 
building and test of several AS-QSAR models which pursue 
the prediction of drug parameters in several families. Finally, 
conclusions are given in section 4.  
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II. THE APPROXIMATE SIMILARITY 

A. Similarity and Distance Concepts in Graph Matching 
Given two graphs GA and GB of size (number of nodes and 

edges) A and B, respectively, which represent, as shown in 
Fig. 1, the molecules MA and MB, we define IA,B as the 
isomorphism present between these graphs, and NIFA and 
NIFB as the non common parts (nonisomorphic subgraphs) 
between GA and GB. The structural similarity can be calculated 
as follows: 

),,( ,, BAIfS BABA =                             (1) 

where f is a function which matches SA,B and IA,B taking into 
account the size of graphs GA and GB.  

   
MA (GA)  MB (GB) 

 
 

 
NIFA IA = IB NIFB 

 
  

Fig. 1 Description of molecules MA and MB by graphs GA 
and GB. These molecules present the isomorphism IA,B= IA 
= IB. NIFA and NIFB represent the subgraphs of GA and GB, 

respectively, which do not form IA,B 
 

The similarity SA,B is a value in the interval [0,1] which 
gives the similarity between the graphs GA and GB and, then, 
the closer to 1 the SA,B shows, the higher the similarity 
between the molecules MA and MB is. Thus, different 
similarity values are obtained depending on both the method 
employed for calculating the isomorphism and the f() 
similarity function (similarity index considered). Regarding 
the isomorphism calculation, MCES (Maximum Common 
Edges Subgraph), MCS (Maximum Common Subgraph) or 
AMCS (All Maximum Common Subgraphs) approaches, in 
addition to the methods based on transforming graphs into 
fingerprints, are the commonest methodologies [6]. And 
regarding to the similarity function, there are several similarity 
indexes summarized in literature whose difference lies in the 
function, namely: Tanimoto, Cosine, Simpson, Raymond, etc. 
[2]. 

Since our proposal is also to consider distances between the 
subgraphs that do not form the isomorphism IA,B, the structural 
difference ГA,B (dissimilarity or distance) between two 
molecular graphs GA and GB is calculated as follows: 

)](),([
)],(),,([ .,,

BA

BABBAABA

NIFtdNIFtdg
IGtdIGtdg

=

==Γ
            (2) 

where IA,B has the equal meaning to that shown in expression 
(1); NIFA=GA-IA,B and NIFB=GB-IA,B represent the subgraphs 
of GA and GB, respectively, that do not form the isomorphism 
IA,B; g() is a function aimed to obtaining a distance value (e.g. 
Euclidean, Mahalanobis, etc.) between td(NIFA) and td(NIFB); 

and td is a topological descriptor which describe the 
noncommon subgraphs, namely: Wiener (W), Hyper Wiener 
(WW) and so on indexes. Contrary to similarity, higher the 
ГA,B shows, higher the dissimilarity between the molecules MA 
and MB is.  

B. Correction of the Structural Similarity: The 
Approximate Similarity 

With the aim of defining a new similarity measurement 
which takes into account both the classical similarity and the 
nonisomorphic distance, the Approximate Similarity (AS) is 
defined as follows: 

),w,Γf(SAS ΓA,BA,BA,B =                        (3) 

where SA,B and ГA,B are the similarity and dissimilarity defined 
in equations (1) and (2), respectively; and wΓ is a weighting 
factor which adjusts the distance contribution in the 
approximate similarity calculation.  

Thus, chemical similarity achieved by the AS approach will 
be more accurate due to the consideration of the difference 
between the noncommon substructures of the matched 
molecules, that most time are responsible for their properties / 
activities. 

C. Multivariate AS Predictive Spaces 
If an N by N AS matrix is built using N compounds, this AS 

matrix can be employed to develop multivariate QSAR 
approaches. Each element AS(i,j) provides the approximate 
similarity between the compounds i and j and it shows the 
same value as the element AS(j,i). The diagonal of the matrix 
is equal to 1.  

From the point of view of multivariate regression, the AS 
matrix is considered a set of N objects (rows) characterized by 
N variables (columns). Thus, an object is a given compound 
described by a serie of global variables which accounts for the 
similarity between the compound and a reference compound. 
PLS was employed as the multivariate regression technique 
[7]. 

III. AS-QSAR MODELS 
Several QSAR models which are able to match the AS 

values of a drug with its pharmacological activity have been 
built. For this purpose, chemical data sets were splited into 
training and test subsets; the former was employed for 
building the models (full cross validation was the training 
strategy), whereas the latter was used for externally validating 
the predictive ability achieved.  

Three AS-QSAR models for three pharmacological 
activities, respectively, are presented below. 

A. Model for Predicting the Steroid Binding to the 
Corticosteroid-Binding Globulin Receptor 

The thirty classical steroids considered as the benchmark 
for testing structure activity-relationships [8] was the first 
chemical family to be modeled by AS matrixes. AS 
measurements were computed as follows: 
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BABABA wSAS ,,, Γ×−= Γ                       (4) 

where BA,Γ  is a scaled value of the structural dissimilarity 
ГA,B defined in equation (2). Similarities were calculated using 
the cosine index, whereas dissimilarities were computed using 
both the Euclidean distance and the Wiener invariant 
(computed the latter over the weighted distance matrix of the 
nonisomorphic subgraphs). 

There is a need to optimize the weight wГ for combining 
structural similarities and distances. An excessive significance 
of distances in AS calculation can add random information 
and, then, no a deterministic part to the total predictive ability. 
In this study, the factor wГ was moved from 1.0 to 0.1 and 
important variations were obtained. Different models were 
trained using 1-21 steroids and then tested using the remaining 
22-30. Table I shows the statistical parameters obtained in the 
training and test of the models built using the 30 steroids also 
shown in Table I.  

The higher the Q2 and r parameters are, the greater the 
predictive ability is (minimal error). Slope and bias must be 
close to 1.00 and 0.00, respectively. As can be observed, the 
best model was developed when AS matrixes were computed 
using the factor wГ set at 0.3. As can be observed in Table I 
this model also shows a higher predictive ability than the 
models using classical similarity and distance separately. 

Moreover, the results obtained compare reasonably well 
with other recent methods based on 3D-QSAR methods [9]. It 
should be stressed that our model is based on topological 
measurements and, then, it is a simpler method than other 
approaches. 

       
       

TABLE I 
STATISTICAL PARAMETERS OBTAINED IN THE TRAINING AND TEST STAGES OF SEVERAL AS-QSAR MODEL BUILT USING THE 30 

STEROIDS ABOVE REPRESENTED 
  

    
 

    
 Training Test 

 Descriptor Q2 Error Slope Bias r Error Slope Bias 
Similarity 0.80 0.53 0.97 0.15 0.68 0.45 0.95 0.20 

 Distance 0.60 0.74 0.98 0.14 0.61 0.55 0.54 3.29  
AS (wГ =1.0) 0.71 0.66 0.85 0.90 0.28 0.78 -0.39 9.70 

 AS (wГ =0.5) 0.82 0.51 0.97 0.17 0.77 0.39 0.90 0.58 
AS (wГ = 0.3) 0.84 0.47 0.97 0.15 0.82 0.39 1.03 -0.45 

 AS (wГ = 0.1) 0.77 0.57 0.97 0.17 0.65 0.44 0.79 1.38 

 
     

 

 
     

 

 
 

 
B. Model for Predicting the Activity of Benzodiazepine 

Receptor Ligands 
The GABAA/benzodiazepine receptor (GABAA/BzR) 

forms a chloride ion (Cl—) selective channel. Its function is 
initiated by the binding of γ-aminobutyric acid (GABA), 
considered as the principal inhibitory neurotransmitter of the 

central nervous system. GABAA/BzR agonists (anxiolytic, 
anticonvulsant, and sedative effects), inverse agonists 
(anxiogenic, stimulant, and convulsant effects) or antagonists 
(null efficacy) are recognized compounds which bond to 
GABA/BzR and enhance, diminish or block the Cl— channel, 
respectively. We have developed AS-QSAR models for 
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predicting the activity of 58 compounds which bond to 
GABA/BzR. 

With the aim of improving several characteristics of the AS 
concept, we propose the AS calculation as follows: 
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where SI

A,B, the invariant-based similarity, which uses 
topological descriptors in similarity calculation instead of the 
number of nodes and edges. Thus, SI

A,B should refine the 
extracted chemical information and, in turn, improve the 
structure-activity relationships —type and ratio of 
intramolecular bonds are employed—. 

On other hand, SI
A,B is corrected taking into consideration 

the size and nature of the molecules A and B (values of TD(A) 
and TD(B)), and the dissimilarity of the nonisomorphic parts 
(values of TD(NIFA) and TD(NIFB)). The greater difference 
between TD(NIFA) and TD(NIFB) is the greater similarity 
correction, having this factor values closer to 0. As can be 
observed in expression (5), optimization of the contribution of 
nonisomorphic substructures in similarity is not empirically or 
manually modeled, so an automation of the approximate 
similarity computing is now possible. 

Fig. 2 (A) and (B) shows the predicted vs lab activities 
plots obtained in the training stage (using 49 of the 58 
compounds) for the AS matrixes built using eq. 4 — wГ set at 
0.3— and eq. 5, respectively. Test stages carried out with the 
remaining 9 compounds gave the following results: 

 
Eq.4 Model:  r = 0.75; Error = 0.98;  

slope = 0.74; intercept = 2.03 
Eq.5 Model:  r = 0.79; Error = 0.82;  

slope = 1.00; intercept = 0.00 
 
Taking into consideration the above results and Fig. 2, the 

new contributions to the AS approach are responsible for the 
better results achieved with eq. 5. In addition, results again 
compare reasonably well with those obtained with more 
complex approaches [10]. 

C. Model for Predicting the Blood Brain Barrier 
Permeability of Drugs 

Since the previous AS-QSAR models have been developed 
for homogenous chemical families, the use of AS for 
predicting the blood brain barrier permeability (BBBP) —
expressed as the logBB— of 130 compounds belonging to 
very different chemical families was here pursued. BBBP 
informs about the physical barrier strength stopping 
substances from traveling into the central nervous system.  
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Q2=0.60, SECV=0.91, Slope=0.95, Intercept=0.33 Q2=0.64, SECV=0.83, Slope=0.97, Intercept=0.30 
           Fig. 2 Lab vs. predicted activity plots and statistical parameters of the training stages carried out using  
                  (A) eq. 4 and (B) eq. 5. Data set compounds have similar structures to the ones above shown 

 
TABLE II 

STATISTICAL PARAMETERS OBTAINED IN THE TRAINING AND TEST OF THE AS MODELS BUILT USING EQ. 6 
AND THE WIENER (W) AND HYPERWIENER (WW) INVARIANTS 

 Training Test 

Approach Q2 Error 
Slop

e Bias r2 Error Slope Bias 
W index 0.73 0.31 0.98 -0.01 0.91 0.35 1.30 0.03 
WW index 0.71 0.32 0.96 -0.01 0.91 0.34 1.30 0.04 
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An important new contribution to the AS concept was 
proposed in the building of this model: the Extended 
Maximum Common Subgraph (EMCS), a new isomorphism 
detection which also accounts for the nodes and edges which 
are bridges between the isomorphic and nonisomorphic 
fragments. 

In this way, a nonsymmetric matrix where each element   
stores the EMCS(i,j) of the molecule i compared with the 
molecule j is obtained for a given dataset. 

Using this matrix, EMCS(i,j) topological descriptors can be 
obtained and combined with similarities in order to obtain 
predictive spaces which reflect dissimilarities of the 
substituent positions. AS equation was as follows: 
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The first component is the invariant-based similarity and 
reflects the nucleus similarity regarding to the size and nature 
of molecules A and B. The second component is the term 
which uses the information about the position and nature of 
substituents. In this way, EMCSA,B and EMCSB,A relative 
values regarding to TD(A) and TD(B), respectively, are 
employed to measure a dissimilarity measurement of 
substituent nature and position.  

Since the second term is a dissimilarity value, its 
contribution to the approximate similarity values is negative. 
It is the first time this information is employed. Finally, the 
last term adds a correcting factor proportional to the 
noncommon graphs dissimilarity (NIFA and NIFB). 

The data set composed by 130 molecules was divided into 
the training (105) and test (25) sets. Table II shows the 
statistical characterization of the building and validation 
stages. Two topological invariants (Wiener and HyperWiener) 
were employed for isomorphic and nonisomorphic 
substructures, but similar results were obtained. 

The difference of the calculation of both indexes lies on the 
analysis of the weighted distance matrix. Wiener index is 
computed as the half-sum of all the elements of the weighted 
distance matrix, while the HyperWiener descriptor uses 
quadratic values of the matrix elements in addition to the half-
sum of these elements. Differentiation achieved by the Wiener 
graph description was appropriate for obtaining good results, 
but the consideration of HyperWiener indexes did not add 
noise to the predictive matrixes. 

IV. REMARKS 
Methods presented in this work have achieved the aim of 

refining the classical similarity measure by means of 
considering differences or dissimilarities between the 
subgraphs which do not form the isomorphism between two 
molecular graphs. 

 

Thus, a new similarity approach (Approximate similarity) 
has been employed for developing QSAR models for the 
prediction of several activities of drugs, namely: 1) binding of 
steroids to the globulin-corticosteroid receptor, (2) the activity 
of benzodiazepine receptor compounds, and (3) the blood 
brain barrier permeability. The AS approach was applied to 
homogeneous and heterogeneous data sets. For the latter, the 
consideration of Extended Maximum Common Subgraphs as a 
new isomorphism measurement allowed developing valuable 
prediction models.  

Moreover, when our results were compared with other more 
complex QSAR approaches summarized in literature, better 
and similar statistical values were obtained. Robustness of 
models has also been tested by external validation, showing 
acceptable results.  
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