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Abstract—Utilizing the Lyapunov functional method and
combining linear matrix inequality (LMI) techniques and integral
inequality approach (IIA) to analyze the global asymptotic stability
for delayed neural networks (DNNs),a new sufficient criterion
ensuring the global stability of DNNs is obtained.The criteria are
formulated in terms of a set of linear matrix inequalities,which can
be checked efficiently by use of some standard numercial
packages.In order to show the stability condition in this paper gives
much less conservative results than those in the literature,numerical
examples are considered.
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I. INTRODUCTION

NEURAL networks have attracted many researchers

attention during the past decades and have found

successful applications in many various areas. such as signal

processing,static image processing,combinatorial optimization

and associative memory [1,2].the occurrence of time delays

is unavoidable during the processing and transmission of the

signals because of the finite switching speed of amplifiers in

electronic networks or finite speed for signal propagation in

biological networks ,the existence of time delay may cause

instability and oscillation of neural networks.Therefore

stability analysis of delayed neural networks has been

extensively investigated by many researchers [3-30].

In this regard, many sufficient conditions ensuring global

asymptotic stability and global exponential stability for

delayed neural networks have been derived [3-25]. However

in most of the known results,the time-varying delay varies

from 0 to an upper bound.In fact,the lower bound of

time-varying delay is not restricted to be zero. A typical

example of dynamic with interval time-varying delays is

networked control systems [18]. [19] pointed that the

stability conditions are hardly improved by using the same

Lyapunov-Krasovskii functional, delay-partitioning approach,

which was firstly introduced by Gu [21], has attracted by

many researchers. Now, some researchers found many new

approaches on stability analysis for neural networks with

time-varying delay. Such as by estimating more tighter upper

bounds,introducing new Lyapunov functional,dividing delay

interval and so on.
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Motivated by this mentioned above, in this paper, two new

delay-dependent stability criteria for neural networks with

interval time-varying delay will be proposed by dividing the

delay interval [ς0, ςm] into four itervals [ς0,
ς0+ς(t)

2 ],

[ ς0+ς(t)
2 , ς(t)],[ς(t), ςm+ς(t)

2 ],[ ςm+ς(t)
2 , ςm], constructing new

Lyapunov-Krasovskii functional which contains some new

integral and triple-integral terms and establishing some new

zero equalities,two new delay-dependent stability criteria for

neural networks with interval time-varying delay will be

proposed by employing different approaches.Finally

numerical examples are given to show the effectiveness and

less conservativeness of the proposed methods.

Notations: The notations in this paper are quite standard.

I denotes the identity matrix with appropriate dimensions,Rn

denotes the n dimensional Euclid space, and Rm×nis the set

of all m× n real matrices, ∗ denotes the elements below the

main diagonal of a symmetric block matrix. For symmetric

matrices A and B,the notation A > B(respectively,A ≥ B )

means that the matrix A−B is positive definite (respectively,

nonnegative).

II. PROBLEM STATEMENT

Consider the following neural networks with interval time

varying delays:

ż(t) = −Cz(t) +Ag(z(t)) +Bg(z(t− ς(t))) + I0 (1)

where z(t)=[z1(t), z2(t), . . . , zn(t)]
T ∈Rn is the neuron state

vector,g(z(t)) = [g1(z1(t)), g2(z2(t)), . . . , gn(zn(t))]
T ∈ Rn

denotes the neuron activation function ,and I0=[I1, I2, . . . ,
In]

T ∈Rn is a constant input vector,C = diag{ci} ∈Rn is a

positive diagonal matrix , A=(aij)n×n∈Rn is the connection

weight matrix,B = (bij)n×n ∈ Rn is the delayed connection

weight matrix.

The following assumptions are adopted throughout the paper.

Assumption 1: The delay is time-varying continuous function

and satisfies:

0 ≤ ς0 ≤ ς(t) ≤ ςm, ς̇(t) ≤ μ≤ 1 (2)

where ς0, ςm,and μ are constants.

Assumption 2: Each neuron activation function gi(·), in (1)

satisfies the following condition:

γ−
i ≤ gi(α)− gi(β)

α− β
≤ γ+

i , ∀α, β ∈ R,α �= β (3)

where γ−
i , γ+

i , i = 1, 2, . . . , n are constants,and assume that

Σ− = diag{γ−
1 , γ−

2 , . . . , γ−
n },Σ+ = diag{γ+

1 , γ+
2 , . . . , γ+

n }.
Based on Assumption 1-2, it can be easily proven that there
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exists one equilibrium point for (1) by Brouwer‘s fixed-point

theorem. Assuming that z∗ = [z∗1 , z
∗
2 , . . . , z

∗
n]

T is the

equilibrium point of (1) and using the transformation

y(·) = z(·) − z∗,the system (1) can be converted to the

following system :

ẏ(t) = −Cy(t) +Af(y(t)) +Bf(y(t− ς(t))) (4)

where y(t) = [y1(t), y2(t), . . . , yn(t)]
T ,f(y(t)) = [f1(y1(t)),

f2(y2(t)), . . . , fn(yn(t))]
T , fi(yi(·))=gi(zi(·)+z∗i )−gi(z

∗
i ),

i = 1, 2, . . . , n.
From Eq.(3),fi(·) satisfies the following condition:

γ−
i ≤ fi(α)

α
≤ γ+

i , ∀α �= 0, i = 1, 2, . . . , n. (5)

Due to the disturbance frequent occurs in many applications,so

by translating A,B and C to function A(t), B(t) and C(t)
respectively,we have

ẏ(t) = −C(t)y(t) +A(t)f(y(t)) +B(t)f(y(t− ς(t))) (6)

Assumption 3: Letting A(t) = A + ΔA(t), B(t) =
B + ΔB(t), C(t) = C + ΔC(t),and ΔA(t),ΔB(t),ΔC(t)
are unknown constant matrices representing time-varying

parametric uncertainties, and are of linear fractional forms:

[ΔC(t),ΔA(t),ΔB(t)] = GΔ(t)[Ec, Ea, Eb] (7)

with

Δ(t) = Λ(t)(I − JΛ(t))−1, I − JTJ > 0 (8)

where G, J,Ea, Eb, Ec,are known constant matrices of

appropriate dimensions,Λ(t) is an unknown time-varying

matrix function satisfying ΛT (t)Λ(t) ≤ I .

Lemma 1 [10]. For any constant matrices Q,S satisfy that

S = ST , Q = QT > 0, and 0 ≤ ς0 ≤ ςm,the following

inequality hold:

− (ςm − ς0)

∫ t−ς0

t−ςm

yT (s)Qy(s)ds

≤ −
[∫ t−ς0

t−ς(t)
y(s)ds∫ t−ς(t)

t−ςm
y(s)ds

]T [
Q S
∗ Q

] [∫ t−ς0
t−ς(t)

y(s)ds∫ t−ς(t)

t−ςm
y(s)ds

] (9)

Lemma 2 [20]. For any positive semi-definite matrices X =⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ X33

⎤
⎦≥0,the following integral integral inequality

holds:

−
∫ t−ς0

t−ς(t)

yT (s)X33y(s)ds

≤
∫ t−ς0

t−ς(t)

⎡
⎣ y(t− ς0)
y(t− ς(t))

y(s)

⎤
⎦
T⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ 0

⎤
⎦
⎡
⎣ y(t− ς0)
y(t− ς(t))

y(s)

⎤
⎦ds

(10)

Lemma 3 [29]. Let I−GTG > 0 define the set Υ = {Δ(t)=
Σ(t)[I − GΣ(t)]−1,ΣT (t)Σ(t) ≤ I},for given matrices H,J

and R of appropriate dimension and with H symmetrical,then

H + JΔ(t)R + RTΔT (t)JT <0,if and only if there exists a

scalar ρ > 0 such that

H +
[
ρ−1RT ρJ

] [ I −G
−GT I

] [
ρ−1R
ρJT

]
< 0 (11)

III. MAIN RESULTS

In this section,a new Lyapunov functional is constructed

and a less conservative delay-dependent stability criterion is

obtained. First, we take up the case where

ΔA(t) = 0,ΔB(t) = 0,ΔC(t) = 0 in system (6).

Denote

ξTi (t) = [yT (t) yT (t− ς0 + ςm
2

) yT (t− ς0) y
T (t− ςm)

yT (t− ς(t)) fT (y(t)) fT (y(t− ς(t))) ηTi (t)]

where

ηT1 (t) =
[∫ t−ς0

t−ς(t)
yT (s)ds

∫ t−ς(t)

t− ςm+ς0
2

yT (s)ds
]

ηT2 (t) =
[∫ t− ςm+ς0

2

t−ς(t) yT (s)ds
∫ t−ς(t)

t−ςm
yT (s)ds

]
Theorem 1 Given that the Assumption 1-2 hold, the system

(6) is globally asymptotic stability if there exist symmetric

positive definite matrices S1, S2, Qi, i = 1, 2, . . . , 8, Ri, i =

1, . . . , 6, P,H,

[
G11 G12

∗ G22

]
,symmetric positive semi-definite⎡

⎣X11 X12 X13

∗ X22 X23

∗ ∗ Q5

⎤
⎦ ,

⎡
⎣Y11 Y12 Y13

∗ Y22 Y23

∗ ∗ Q5

⎤
⎦ ,

⎡
⎣U11 U12 U13

∗ U22 U23

∗ ∗ Q6

⎤
⎦ ,

⎡
⎣V11 V12 V13

∗ V22 V23

∗ ∗ Q6

⎤
⎦, positive diagonal matrices W1,W2,K =

diag{k1, k2, . . . , kn}, L = diag{l1, l2, . . . , ln},and any

symmetric matrix S3, S4, S5, S6 such that the following

LMIs hold:[
Q5 S6

∗ S1

]
> 0 (12)

[
Q6 S5

∗ S2

]
> 0 (13)

[
Q7 S1

∗ Q8

]
> 0 (14)

[
R5 S2

∗ R6

]
> 0 (15)

[
E ℵTZ
∗ −Z

]
< 0 (16)

[
F ℵTZ
∗ −Z

]
< 0 (17)
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where

E=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E11 0 0 0 0 E16 E17 0 0
∗ E22 E23 E24 E25 0 0 0 E29

∗ ∗ E33 0 E35 0 0 E38 0
∗ ∗ ∗ E44 0 0 0 0 0
∗ ∗ ∗ ∗ E55 0 E57 E58 E59

∗ ∗ ∗ ∗ ∗ E66 E67 0 0
∗ ∗ ∗ ∗ ∗ ∗ E77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ E88 E89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11 0 0 0 0 F16 F17 0 0
∗ F22 F23 F24 F25 0 0 F28 0
∗ ∗ F33 0 0 0 0 0 0
∗ ∗ ∗ F44 F45 0 0 F48 F49

∗ ∗ ∗ ∗ F55 0 F57 F58 F59

∗ ∗ ∗ ∗ ∗ F66 F67 0 0
∗ ∗ ∗ ∗ ∗ ∗ F77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ F88 F89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ℵ =
[
C 0 0 0 0 −A −B 0 0

]
ς =

ςm − ς0
2

Z =
ς

4
[(ςm + 3ς0)Q8 + (3ςm + ς0)R6]

E11=−CTP − PC − 2(Σ+L− Σ−K)C − 2Σ−W1Σ
+

+H +
ς

4
[(ςm + 3ς0)Q7 + (3ςm + ς0)R5]

+ ς(S1 + S2)

E16 = PA+ (Σ+L− Σ−K)A− (K − L)C

+W1(Σ
+ +Σ−)

E17 = PB + (Σ+L− Σ−K)B

E22 = G22 −G11 + ςQ6 + ςY22 + S5

E23 = GT
12, E24 = −G12, E25 = ςY T

12, E29 = Y23

E33=G11 + ςQ5 + ςX11 −H +Q1 +Q2 +Q3 +Q4

E35 = ςX12, E38 = X13, E44 = −G22 −Q4 − S5

E55 = −(1− μ)Q2 + ς(X22 + Y11)− 2Σ−W2Σ
+

E57 = W2(Σ
+ +Σ−), E58 = X23, E59 = Y13

E66 = 2(K − L)A+R1 +R2 +R3 +R4 − 2W1

E67 = (K − L)B,E77 = −(1− μ)R2 − 2W2

E88 = −1

ς
S1, E89 = −1

ς
S3

E99 = −1

ς
S1

F22 = G22 −G11 + ςQ6 + ςV11 − S6

F25 = ςV12, F28 = V13

F33 = G11 + ςQ5 −H + S6

F44 = −G22 −Q4 + ςG22

F55 = −(1− μ)Q2 + ς(V22 + U11)− 2Σ−W2Σ
+

F58 = V23, F59 = U13, F88 = −1

ς
S2

F89 = −1

ς
S4, F99 = −1

ς
S2

All the other items in matrix F satisfies Fij �= 0,we can get

Fij = Eij , i, j = 1, 2, . . . , 9.

Proof: Construct a new class of Lyapunov functional

candidate as follow:

V (yt) =
7∑

i=1

Vi(yt)

with

V1(yt) = yT (t)Py(t)

V2(yt) = 2

n∑
i=1

[

∫ yi(t)

0

ki(fi(s)− γ−
i s)ds

+

∫ yi(t)

0

li(γ
+
i s− fi(s))ds]

V3(yt)=

∫ t−ς0

t− ςm+ς0
2

[
y(s)

y(s− ςm−ς0
2 )

]T[
G11 G12

∗ G22

][
y(s)

y(s− ςm−ς0
2 )

]
ds

V4(yt) =

∫ t

t−ς0

yT (s)Hy(s)ds+

∫ t−ς0

t− ς(t)+ς0
2

yT (s)Q1y(s)ds

+

∫ t−ς0

t−ς(t)

yT (s)Q2y(s)ds+

∫ t−ς0

t− ς(t)+ςm
2

yT (s)Q3y(s)ds

+

∫ t−ς0

t−ςm

yT (s)Q4y(s)ds

V5(yt) =

∫ t

t− ς(t)+ς0
2

fT (y(s))R1f(y(s))ds

+

∫ t

t−ς(t)

fT (y(s))R2f(y(s))ds

+

∫ t

t− ς(t)+ςm
2

fT (y(s))R3f(y(s))ds

+

∫ t

t−ςm

fT (y(s))R4f(y(s))ds
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V6(yt) =

∫ −ς0

− ςm+ς0
2

∫ t−ς0

t+θ

yT (s)Q5y(s)dsdθ

+

∫ − ςm+ς0
2

−ςm

∫ t− ςm+ς0
2

t+θ

yT (s)Q6y(s)dsdθ

V7(yt) =

∫ −ς0

− ςm+ς0
2

∫ 0

θ

∫ t

t+λ

(yT (s)Q7y(s)+ẏT (s)Q8ẏ(s))dsdλdθ

+

∫ − ςm+ς0
2

−ςm

∫ 0

θ

∫ t

t+λ

(yT (s)R5y(s)+ẏT (s)R6ẏ(s))dsdλdθ

Then, taking the time derivative of V(t) with respect to t along

the system (6) yield

V̇ (yt) =

7∑
i=1

V̇i(yt)

where

V̇1(yt) = 2yT (t)P ẏ(t) (18)

V̇2(yt) =2[f
T (y(t))(K − L)+yT (t)(Σ+L− Σ−K)]ẏ(t)

(19)

V̇3(yt) =

[
y(t− ς0)

y(t− ςm+ς0
2 )

]T [
G11 G12

∗ G22

] [
y(t− ς0)

y(t− ςm+ς0
2 )

]

−
[
y(t− ςm+ς0

2 )
y(t− ςm)

]T [
G11 G12

∗ G22

] [
y(t− ςm+ς0

2 )
y(t− ςm)

]
(20)

V̇4(yt) = yT (t− ς0)(Q1 +Q2 +Q3 +Q4 −H)y(t− ς0)

+ yT (t)Hy(t)− yT (t− ςm)Q4y(t− ςm)

− (1− μ

2
)yT (t− ς(t) + ςm

2
)Q3y(t− ς(t) + ςm

2
)

− (1− μ

2
)yT (t− ς(t) + ς0

2
)Q1y(t− ς(t) + ς0

2
)

− (1− μ)(yT (t− ς(t))Q2y(t− ς(t))
(21)

V̇5(yt) = fT (y(t))(R1 +R2 +R3 +R4)f(y(t))

−fT (y(t− ςm))R4f(y(t− ςm))

−(1− μ)fT (y(t− ς(t)))R2f(y(t− ς(t)))

−(1− μ

2
)[fT (y(t− ς(t)+ς0

2
))R1f(y(t− ς(t)+ς0

2
))

−fT (y(t− ς(t)+ςm
2

))R3f(y(t− ς(t)+ςm
2

))]

(22)

V̇6(yt) = ςyT (t− ς0))Q5y(t− ς0)

+ ςyT (t− ςm + ς0
2

)Q6y(t− ςm + ς0
2

)

−
∫ t−ς0

t− ςm+ς0
2

yT (s)Q5y(s)ds

−
∫ t− ςm+ς0

2

t−ςm

yT (s)Q6y(s)ds

(23)

V̇7(yt) =
ς(ςm + 3ς0)

4
(yT (t)Q7y(t) + ẏT (t)Q8ẏ(t))

+
ς(3ςm + ς0)

4
(yT (t)R5y(t) + ẏT (t)R6ẏ(t))

−
∫ −ς0

− ςm+ς0
2

∫ t

t+θ

(yT (s)Q7y(s)+ẏT (s)Q8ẏ(s))dsdθ

−
∫ − ςm+ς0

2

−ςm

∫ t

t+θ

(yT (s)R5y(s)+ẏT (s)R6ẏ(s))dsdθ

(24)

The following four zero equalities with symmetric positive

definite matrices S1 ,S2,and any symmetric matrix S5, S6 are

considered:

yT (t− ςm + ς0
2

)S5y(t− ςm + ς0
2

)− yT (t− ςm)S5y(t− ςm)

−2

∫ t− ς0+ςm
2

t−ςm

yT (s)S5ẏ(s)ds = 0

(25)

yT (t− ς0)S6y(t− ς0)− yT (t− ςm + ς0
2

)S6y(t− ςm + ς0
2

)

−2

∫ t−ς0

t− ςm+ς0
2

yT (s)S6ẏ(s)ds = 0

(26)

ςyT (t)S1y(t)−
∫ t−ς0

t− ςm+ς0
2

yT (s)S1y(s)ds

−2

∫ −ς0

− ςm+ς0
2

∫ t

t+θ

yT (s)S1ẏ(s)dsdθ = 0

(27)

ςyT (t)S2y(t)−
∫ t− ςm+ς0

2

t−ςm

yT (s)S2y(s)ds

−2

∫ − ςm+ς0
2

−ςm

∫ t

t+θ

yT (s)S2ẏ(s)dsdθ = 0

(28)

From (27)-(28),we can obtain the following equality:

V̇7(yt) =
ς(ςm + 3ς0)

4
(yT (t)Q7y(t) + ẏT (t)Q8ẏ(t))

+
ς(3ςm + ς0)

4
(yT (t)R5y(t) + ẏT (t)R6ẏ(t))

+ ςyT (t)(S1 + S2)y(t)−
∫ t−ς0

t− ςm+ς0
2

yT (s)S1y(s)ds

−
∫ t− ςm+ς0

2

t−ςm

yT (s)S2y(s)ds

−
∫ −ς0

− ςm+ς0
2

∫ t

t+θ

[
y(s)
ẏ(s)

]T [
Q7 S1

∗ Q8

] [
y(s)
ẏ(s)

]
dsdθ

−
∫ − ςm+ς0

2

−ςm

∫ t

t+θ

[
y(s)
ẏ(s)

]T [
R5 S2

∗ R6

] [
y(s)
ẏ(s)

]
dsdθ

From (5), we can get that there exist positive diagonal matrices

W1,W2 such that the following inequalities holds:

−2fT (y(t))W1f(y(t)) + 2yT (t)W1(Σ
− +Σ+)f(y(t))

−2yT (t)Σ−W1Σ
+y(t) ≥ 0

(29)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:1, 2014

57

−2fT (y(t− ς(t)))W2f(y(t− ς(t))) + 2yT (t− ς(t))W2(Σ
−

+Σ+)f(y(t− ς(t)))−2yT (t− ς(t))Σ−W2Σ
+y(t− ς(t))≥0

(30)

Using Lemma 1,one can obtain

−
∫ t−ς0

t− ςm+ς0
2

yT (s)S1y(s)ds

≤−1

ς

⎡
⎣

∫ t−ς0
t−ς(t)

y(s)ds∫ t−ς(t)

t− ςm+ς0
2

y(s)ds

⎤
⎦
T[
S1 S3

∗ S1

]⎡⎣
∫ t−ς0
t−ς(t)

y(s)ds∫ t−ς(t)

t− ςm+ς0
2

y(s)ds

⎤
⎦

(31)

−
∫ t− ςm+ς0

2

t−ςm

yT (s)S2y(s)ds

≤−1

ς

⎡
⎣∫ t− ςm+ς0

2

t−ς(t) y(s)ds∫ t−ς(t)

t−ςm
y(s)ds

⎤
⎦
T[
S2 S4

∗ S2

]⎡⎣∫ t− ςm+ς0
2

t−ς(t) y(s)ds∫ t−ς(t)

t−ςm
y(s)ds

⎤
⎦

(32)

(1) when ς0 ≤ ς(t) ≤ ςm+ς0
2 ,one can obtain

−
∫ t−ς0

t−ς(t)

yT (s)Q5y(s)ds

≤
∫ t−ς0

t−ς(t)

[
y(t− ς0)
y(t− ς(t))

y(s)

]T[
X11 X12 X13

∗ X22 X23

∗ ∗ 0

][
y(t− ς0)
y(t− ς(t))

y(s)

]
ds

(33)

−
∫ t−ς(t)

t− ςm+ς0
2

yT (s)Q5y(s)ds

≤
∫ t−ς(t)

t− ςm+ς0
2

[
y(t− ς(t))

y(t− ςm+ς0
2

)
y(s)

]T[
Y11 Y12 Y13

∗ Y22 Y23

∗ ∗ 0

][
y(t− ς(t))

y(t− ςm+ς0
2

)
y(s)

]
ds

(34)

From (18)-(25),(29)-(32),and (34)-(35) one can obtain

V̇ (yt) ≤ ξT1 (t)Ēξ1(t)− fT (y(t− ςm))R4f(y(t− ςm))

− (1− μ

2
)yT (t− ς(t) + ςm

2
)Q3y(t− ς(t) + ςm

2
)

− (1− μ

2
)yT (t− ς(t) + ς0

2
)Q1y(t− ς(t) + ς0

2
)

− (1− μ

2
)fT (y(t− ς(t) + ς0

2
))R1f(y(t− ς(t) + ς0

2
))

− (1− μ

2
)fT (y(t− ς(t) + ςm

2
))R3f(y(t− ς(t) + ςm

2
))

−
∫ t− ςm+ς0

2

t−ςm

[
y(s)
ẏ(s)

]T [
Q6 S5

∗ S2

] [
y(s)
ẏ(s)

]
ds

−
∫ −ς0

− ςm+ς0
2

∫ t

t+θ

[
y(s)
ẏ(s)

]T [
Q7 S1

∗ Q8

] [
y(s)
ẏ(s)

]
dsdθ

−
∫ − ςm+ς0

2

−ςm

∫ t

t+θ

[
y(s)
ẏ(s)

]T [
R5 S2

∗ R6

] [
y(s)
ẏ(s)

]
dsdθ

where

Ē11 = −CTP − PC − 2(Σ+L− Σ−K)C − 2Σ−W1Σ
+ +H

+ ς(S1 + S2) +
ς

4
[(ςm + 3ς0)Q7 + (3ςm + ς0)R5]

+ CTZC

Ē16 = PA+ (Σ+L− Σ−K)A− (K − L)C +W1(Σ
+ +Σ−)

− CTZA

Ē17 = PB + (Σ+L− Σ−K)B − CTZB

Ē66 = 2(K − L)A+R1 +R2 +R3 +R4 − 2W1 +ATZA

Ē67 = (K − L)B +ATZB

Ē77 = −(1− μ)R2 − 2W2 +BTZB

All the other items in matrix Ē ,we can get Ēij = Eij , i, j =
1, 2, . . . , 9.

(2) when ςm+ς0
2 ≤ ς(t) ≤ ςm,one can obtain

−
∫ t− ςm+ς0

2

t−ς(t)

yT (s)Q6y(s)ds

≤
∫ t− ςm+ς0

2

t−ς(t)

⎡
⎣y(t− ςm+ς0

2 )
y(t− ς(t))

y(s)

⎤
⎦
T⎡
⎣U11 U12 U13

∗ U22 U23

∗ ∗ 0

⎤
⎦
⎡
⎣y(t− ςm+ς0

2 )
y(t− ς(t))

y(s)

⎤
⎦ds

(35)

−
∫ t−ς(t)

t−ςm

yT (s)Q6y(s)ds

≤
∫ t−ς(t)

t−ςm

⎡
⎣y(t− ς(t))
y(t− ςm)

y(s)

⎤
⎦
⎡
⎣V11 V12 V13

∗ V22 V23

∗ ∗ 0

⎤
⎦
⎡
⎣y(t− ς(t))
y(t− ςm)

y(s)

⎤
⎦ds

(36)

From (18)-(24),(26),(29)-(31),(33) and (37)-(38) one can

obtain

V̇ (yt) ≤ ξT2 (t)F̄ ξ2(t)− fT (y(t− ςm))R4f(y(t− ςm))

− (1− μ

2
)yT (t− ς(t) + ςm

2
)Q3y(t− ς(t) + ςm

2
)

− (1− μ

2
)yT (t− ς(t) + ς0

2
)Q1y(t− ς(t) + ς0

2
)

− (1− μ

2
)fT (y(t− ς(t) + ς0

2
))R1f(y(t− ς(t) + ς0

2
))

− (1− μ

2
)fT (y(t− ς(t) + ςm

2
))R3f(y(t− ς(t) + ςm

2
))

−
∫ t−ς0

t− ςm+ς0
2

[
y(s)
ẏ(s)

]T [
Q5 S6

∗ S1

] [
y(s)
ẏ(s)

]
ds

−
∫ −ς0

− ςm+ς0
2

∫ t

t+θ

[
y(s)
ẏ(s)

]T [
Q7 S1

∗ Q8

] [
y(s)
ẏ(s)

]
dsdθ

−
∫ − ςm+ς0

2

−ςm

∫ t

t+θ

[
y(s)
ẏ(s)

]T [
R5 S2

∗ R6

] [
y(s)
ẏ(s)

]
dsdθ

where

F̄11 = Ē11, F̄16 = Ē16, F̄17 = Ē17

F̄66 = Ē66, F̄67 = Ē67, F̄77 = Ē77

All the other items in matrix F̄ ,we can get F̄ij = Fij , i, j =
1, 2, . . . , 9.
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Hence,combined with the Schur Complement and (12)-(15),

we can obtain

V̇ (yt) ≤ 0

This means that the system (6) is asymptotically stable, which

complete the proof.

Based on Theorem 1,we have the following result for

neural networks with time-varying.

Theorem 2 Given that the Assumption 1-3 hold, the system

(6) is globally asymptotic stability if there exist symmetric

positive definite matrices Qi, i = 1, . . . , 8, Ri, i = 1, . . . , 6,[
G11 G12

∗ G22

]
, P,H, S1, S2, symmetric positive semi-definite⎡

⎣X11 X12 X13

∗ X22 X23

∗ ∗ Q5

⎤
⎦ ,

⎡
⎣Y11 Y12 Y13

∗ Y22 Y23

∗ ∗ Q5

⎤
⎦ ,

⎡
⎣U11 U12 U13

∗ U22 U23

∗ ∗ Q6

⎤
⎦ ,

⎡
⎣V11 V12 V13

∗ V22 V23

∗ ∗ Q6

⎤
⎦ ,positive diagonal matrices W1,W2,K =

diag{k1, k2, . . . , kn}, L = diag{l1, l2, . . . , ln},any symmetric

matrix S3, S4, S5, S6 and ρi > 0, i = 1, 2,such that the

following LMIs hold:[
Q5 S6

∗ S1

]
> 0 (37)

[
Q6 S5

∗ S2

]
> 0 (38)

[
Q7 S1

∗ Q8

]
> 0 (39)

[
R5 S2

∗ R6

]
> 0 (40)

⎡
⎢⎢⎣
E ℵTZ ρ−1

1 ΦT
1 ρ1θ

T
1

∗ −Z 0 ρ1ZG
∗ ∗ −I J
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0 (41)

⎡
⎢⎢⎣
F ℵTZ ρ−1

2 ΦT
1 ρ2θ

T
1

∗ −Z 0 ρ2ZG
∗ ∗ −I J
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0 (42)

where

Φ1 =
[
Ec 0 0 0 0 −Ea −Eb 0 0

]
Φ =

[
Φ1 0

]
θ1 =

[−GTP−Σ+L+Σ−K 0 0 0 0 L−K 0 0 0
]

θ =
[
θ1 GTZ

]T
Proof: Replacing C,A and B in (14),(15) with

C(t) = C + GΔ(t)Ec, A(t) = A + GΔ(t)Ea,and

B(t) = B +GΔ(t)Eb,respectively,it follows that,the LMIs in

(14),(15) are equivalent to[
E ℵTZ
∗ −Z

]
+ θΔ(t)Φ + ΦTΔT (t)θT < 0

[
F ℵTZ
∗ −Z

]
+ θΔ(t)Φ + ΦTΔT (t)θT < 0

By Lemma 3,there exists two positive scalars ρi, i = 1, 2,such

that[
E ℵTZ
∗ −Z

]
+
[
ρ−1
1 ΦT ρ1θ

] [ I −J
−JT I

]−1 [
ρ−1
1 Φ
ρ1θ

T

]
< 0

[
F ℵTZ
∗ −Z

]
+

[
ρ−1
2 ΦT ρ2θ

] [ I −J
−JT I

]−1 [
ρ−1
2 Φ
ρ2θ

T

]
< 0

By Schur Complement,the inequalities (46),(47) are equivalent

to the LMIs in (44),(45) .This completes the proof.

Remark 1 Theorem 1 and Theorem 2 proposes an improved

global asymptotic stability for delayed neural networks.This

paper not only divide the delay interval [ς0, ςm] into

[ς0,
ς0+ςm

2 ],[ ς0+ςm
2 , ςm],but divides the interval [ς0, ςm] into

[ς0,
ς0+ς(t)

2 ],[ ς0+ς(t)
2 , ς(t)],[ς(t), ςm+ς(t)

2 ],[ ςm+ς(t)
2 , ςm], Each

segments has a different Lyapunov matrix in function

V ,which have potential to yield less conservative results.

Remark 2 In this paper,Theorem 1 and Theorem 2 require

the upper bound μ of the time-varying delay ς(t) to be

known.However,in many cases μ is unknown,considering this

situation,we can set Qi = Ri = 0, i = 1, 2, 3 in V (yt),and

employ the similar methods in Theorem 1 and Theorem

2,we can obtain that satisfy delay-dependent and

delay-derivative-independent stability criteria.

Remark 3 When J = 0,the Assumption 3 can be reduced

to the popular expression such as GΔ(t)Ec = GΛ(t)Ec,in

which ΔT (t)Δ(t) = ΛT (t)Λ(t) ≤ I .Thus,the form includes

the norm-bounded uncertainty as its special case.

IV. NUMERICAL EXAMPLES

In this section,we provide three numerical examples to

demonstrate the effectiveness and less conservatism of our

delay-dependent stability criteria.

Example 1 Consider a delayed recurrent neural networks

with the following parameters:

ẏ(t) = −Cy(t) +Af(y(t)) +Bf(y(t− ς(t)))

where

C =

[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1
1 1

]

The neuron activation functions are assumed to satisfy

Assumption 2 with Σ− = diag{0, 0},Σ+ = diag{0.4, 0.8}.

For the case of ς0 = 0,the upper bounds of ςm for different μ

shows that the stability condition in this paper gives much

less conservative results than those in the literature.

Example 2 Consider a delayed recurrent neural networks

is derived by Theorem 1,According to Table I,this example
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TABLE I
ALLOWABLE UPPER BOUND OF ςm FOR EXAMPLE 1.

Method μ = 0.8 μ = 0.9 Unknown μ
[5] 2.3534 1.6050 1.5103
[6] 2.8854 1.9631 1.7810
[7] 3.0604 1.9956 1.7860
[8] 4.1626 3.9766 3.1690

Theorem 1 5.0145 4.3630 3.7893

TABLE II
COMPARIONS THE UPPER BOUND OF ςm FOR VARIOUS μ IN EXAMPLE 2.

Method μ = 0.4 μ = 0.45 μ = 0.5 μ = 0.55
[7] 5.2420 4.4301 4.1055 3.9231
[8] 7.9626 7.6766 7.1690 6.9895

Theorem 1 8.4870 8.2450 7.6975 7.0875

with the following parameters:

ẏ(t) = −Cy(t) +Af(y(t)) +Bf(y(t− ς(t)))

where

C=

[
1.5 0
0 0.7

]
,A=

[
0.0503 0.0454
0.0987 0.2075

]
,B =

[
0.2381 0.9320
0.0388 0.5062

]

The neuron activation functions are assumed to satisfy

Assumption 2 with Σ− = diag{0, 0},Σ+ = diag{0.3, 0.8}.

the maximum delay bound allowed via the method in recent

papers [7,8] and our new study,and this example shows that

the stability criterion in the paper can lead to less

conservative results than [7,8].

Example 3 Consider a delayed recurrent neural networks

with the following parameters:

ẏ(t) = −Cy(t) +Af(y(t)) +Bf(y(t− ς(t)))

where

C =

⎡
⎣0.6321 0 0

0 0.9230 0
0 0 0.4480

⎤
⎦

A =

⎡
⎣ 0.5988 −0.3224 1.2352
−0.0860 −0.3824 −0.5785
0.3253 −0.9534 −0.5015

⎤
⎦

B =

⎡
⎣−0.9164 0.0360 0.9816

2.6117 −0.3788 0.8428
0.5179 1.1734 −0.2775

⎤
⎦

The neuron activation functions are assumed to satisfy

Assumption 2 with

Σ− = diag{−0.1279,−0.7994,−0.2368},
Σ+ = diag{0.1279, 0.7994, 0.2368}.

the variables ς0,and μ.

TABLE III
ALLOW UPPER BOUND OF ςm IN EXAMPLE 3.

ς0 μ = 0.6 μ = 0.7 μ = 0.8 μ = 0.9
ς0 = 0.2 6.5216 6.1651 5.5750 4.9461
ς0 = 0.4 6.8570 6.4083 6.1695 5.1135
ς0 = 0.6 7.0145 6.9649 6.3215 5.3438

V. CONCLUSION

In this paper, a new delay-dependent asymptotic stability

criterion for neural networks with time-delaying has been

investigated.By dividing the delay interval and constructing

new Lyapunov-Krasovskii functional which contains some

new integral terms and triple-integral terms ,and fully uses

the information about the bounding technique of integral

terms with different free-weighting matrices in different

delay intervals to reduce the conservatism of stability

criteria. Finally, numerical examples have presented to

illustrate the benefits and less conservativeness of the

proposed method.
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