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Abstract—Finding synchronizing sequences for the finite 

automata is a very important problem in many practical applications 
(part orienters in industry, reset problem in biocomputing theory, 
network issues etc). Problem of finding the shortest synchronizing 
sequence is NP-hard, so polynomial algorithms probably can work 
only as heuristic ones. In this paper we propose two versions of 
polynomial algorithms which work better than well-known 
Eppstein’s Greedy and Cycle algorithms. 
 

Keywords—Synchronizing words, reset sequences, Černý 
Conjecture. 

I. INTRODUCTION 

ET us first define the finite automaton without initial or 
final states as a triple A = (Q, A, δ), where Q is the finite 

set of states, A is the finite alphabet, and δ is the transition 
function from Q×A into Q. The free monoid A* is the set of all 
words over A. It contains the empty word ε. We use the 
notation |w| for the length of  w, i.e. the number of letters in w. 
The length of an empty word is 0. If u and v are two words, 
then u.v is a word uv which is the concatenation of them. If 
w=w1w2...wk,  we say that wi is a subword of w.  We extend 
the transition function on the whole free monoid A* in a 
natural way:  
  

*( , ) ( ( , ), ), , ,q aw q a w q Q a A w Aδ δ δ= ∈ ∈ ∈  (1) 
 
Let A be the finite automaton. We say that the word w 
synchronizes A iff 
 
 * : , ( , ) ( , ).w A p q Q p w q wδ δ∃ ∈ ∀ ∈ =  (2) 

 
If such a word exists for A, we say that A is synchronizing. 

If w is the synchronizing word for A and there is no shorter 
one, we say that w is the minimal synchronizing word (MSW) 
for A. It is easy to find a synchronizing word for a given 
automaton, but the problem of finding minimal synchronizing 
word is NP-complete [1]. 

In 1964 Černý stated the following conjecture: 
Conjecture (Černý). If the n-state automaton is 
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synchronizing, then the length of its MSW is not greater than 
(n-1)2. 

The Conjecture turned out to be true for some special cases  
([1], [4], [7], [8]) but in general the problem is still open. 

The problem of finding the minimal synchronizing word for 
a given automaton seems to be just a nice combinatoric 
puzzle, but in fact there is a deep connection between the 
problem and applications (see for example the pioneer works 
of Natarajan [2], [3]). Synchronizing sequences are used in 
part orienters (see the very good example in [4]), 
biocomputing ([5], [6]), network theory etc. Kari [7] gives 
other examples for possible applications: simple error 
recovery in finite automata, leader identification in processor 
networks, road map problem.  

The paper is organized as follows: in Section II we 
introduce the notion of a pair automaton. This construction 
will be used in our algorithms. In Section III we present the 
well-known Eppstein’s Greedy and Cycle algorithms, and 
then we introduce two new algorithms: SynchroP and 
SynchroPL. Section IV includes the numerical results for all 
four algorithms. Then, in Section V we present the example of 
SynchroPL action for particular automaton. Finally, in Section 
VI we discuss obtained results.  

II. THE PAIR AUTOMATON 
Let A=(Q, A, δ) be the finite automaton. For a given 

automaton A we define the pair automaton A2 as a triple (Q’, 
A’, δ’) where: 

- Q’ is a set of states. Each element of Q’ is either the 2-
element subset of Q: {p,q}, where p and q belong to Q 
(p≠q) or a special state q0.  

- A’=A 
- δ’ is a transition function defined in the following way: 

 

 0 ( , ) ( , ),
'({ , }, )

{ ( , ), ( , )} ,
q if p a q a

p q a
p a q a otherwise

δ δ
δ

δ δ
⎧ =

= ⎨
⎩

 (3) 

 
where {p, q} ∈Q’, a ∈  A’. We also define δ(q0, a)=q0  for 

all a ∈  A’. The following Lemma establishes the relation 
between the synchronization of A and some property of its 
pair automaton. 

 
Lemma 1. Let A be the finite automaton and A2 its pair 

automaton. Then A is synchronizing iff the following 
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condition holds: 
 

 *
0' ' : '( , ) .s Q w A s w qδ∀ ∈ ∃ ∈ =  (4) 

 
The proof comes directly from the definition of 

synchronizing word. 
We also define 

* 0( ) min{| |: ( , ) }
w A

d q w q w qδ
∈

= = as the 

minimal distance in the pair automaton from q to q0. This 
distance is defined in the terms of the proper word’s length. 
By W(q) we denote the word which realizes this minimum. 

If for a given word w we have δ(Q,w)=P, then the states 
which at this moment belong to P are called the active states. 
States from Q\P are called inactive states. Of course, at the 
beginning of the synchronization process each state is active. 
If w is the synchronizing word for A and δ(Q,w)=q0, only q0 is 
an active state at the end of the synchronization process. 

III. ALGORITHMS 
Now we will describe two well-known heuristic algorithms 

which find possibly the shortest synchronizing word for a 
given automaton A. They were introduced by Eppstein in [1]. 

The Greedy Algorithm finds a pair of states such that the 
word synchronizing them is the shortest one and transforms 
all active states with this word. The Cycle Algorithm does the 
same, but one state in the pair (in which the synchronization 
takes place) is fixed. 

 
procedure Greedy 
INPUT: automaton A 
OUTPUT: synchronizing word w for A 
1. A2=(Q’,A,δ’) ← A2(A); 
2. w←ε; 
3. while (Q’ != {q0}) do { 
4.    find p: d(p)=min{d(q), q in Q’}; 
5.    w←w.W(p); 
6.    Q’← δ’(Q’,W(p)); } 
7. return w; 
 
In the case of Cycle Algorithm we need to modify the 
definition of  Q’ in pair automaton because now we have to 
distinguish the “single” states of A2. In the pair automaton 
there is only one such state – q0. Let us define the new set 
of states Q’’ in the extended pair automaton as Q’\{q0} ∪ Q 
and redefine the transition function in a following way: 
 

( , ) ( , ) ( , ),
'({ , }, )

{ ( , ), ( , )} .
p a if p a q a

p q a
p a q a otherwise

δ δ δ
δ

δ δ
⎧ =

= ⎨
⎩

(5) 

 
We also redefine the n(q). |P| denotes the cardinality of the 
set P.  We put 

*
( ) min{| |:| ( , ) | 1}

w A
d q w q wδ

∈
= =  

 
procedure Cycle 
INPUT: automaton A 
OUTPUT: synchronizing word w for A 

1. A2=(Q’’,A,δ’) ← A2(A); 
2. w←ε; 
3. find r: d({r,_})=1; 
4. while |Q’’| != 1 do { 
5.    find p={r,_}: d(p)=min{d(q), q in 

Q’’}; 
6.    w←w.W(p); Q’’← δ’(Q’’,W(p)); 
7.    r←p.W(p); } 
8.  return w; 
 
We will now introduce two new algorithms based on d 

function for the pair automata. In each step the algorithms will 
find the sequence which synchronizes at least two states of the 
pair automaton, but now we will also look one step forward, 
that is – we will be checking how the choice of a particular 
state q (and, automatically, the synchronizing subword W(q)) 
in the pair automaton will affect the positions of active states. 
The estimation of how “good” is a given distribution of active 
states among all states of the pair automaton requires 
introducing a measure for it. We will use the d function and 
the following heuristics: 

Suppose that at some stage of our procedure p is an active 
state. We choose a word w=W(q) and we look how the value 
of d for p changes before and after the word w is applied. The 
considered difference is defined as follows: 

 

 
( ( , )) ( )

( , )
0 .q

d p w d p if p q
p w

if p q
δ⎧ − ≠

∆ = ⎨
=⎩

 (6) 

For a given word w=W(q) we can compute ∆q for all active 
states and summarize this values: 

 
 1( , ) ( , ),q

p Act
w q p w

∈

Φ = ∆∑  (7) 

 
where Act is the set of all active states and q is the currently 

considered state. We compute Φ1 for all words W(r), where r 
is an active state. We also assume that if for two words u and 
v Φ1(u) < Φ1(v), then it is better to apply u than v at the stage 
because after applying u to all active states, all transformed 
active states are closer to the synchronizing state than if v is 
applied. The Φ1 function is our measure described above and 
it is the base measure in the first algorithm.  

In the second algorithm we add the reward function which 
equals the length of the chosen word. The Φ2 function with 
“reward” factor is defined as follows: 

 
 2 ( , ) ( ( , )) | | .q

p Act
w q p w w

∈

Φ = ∆ +∑  (8) 

 
Now, let us define the two new algorithms. We name them 

SynchroP and SynchroPL. “P” denotes use of Φ1 (Phi) 
function and “L” means that we add the reward factor related 
to the length of the word. 
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procedure SynchroP 
INPUT: automaton A 
OUTPUT: synchronizing word w for A 
1. A2=(Q’,A,δ’) ← A2(A); 
2. w←ε; 
3. while |Q’| != 1 do { 
4.    min_phi←∞; 
5.    for each active state p do 
6.       if (Φ1(W(p))<min_phi) then 
7.         {min_phi←Φ1(W(p)); v←W(p);} 
8.    w←w.v; Q’← δ’(Q’,W(p)); } 
9. return w; 
 

The procedure SynchroPL is almost the same as 
SynchroP except line 6. in which Φ2 stands for Φ1. 
 
One can prove the following facts (we omit the proofs): 
 
Proposition 2. The time complexity of greedy and cycle 
algorithm is O(n3) . 
 
Proposition 3. The time complexity of SynchroP and 

SynchroPL is O( 51
8

n ). 

IV. NUMERICAL RESULTS 
It is very difficult to analyse the synchronizing algorithms 

because still little is known about the property of “being 
synchronizable”. For example, we don’t even know any 
simple property of the synchronization. Although there are 
many properties (for example, see Lemma 1.), they are all 
defined in algorithmic rather than in theoretical way and 
therefore are worthless in theoretical analysis. 

That is why the only way to compare algorithms is to do a 
computer experiment: generate all n-state synchronizing 
automata, find the synchronizing words for them using all four 
algorithms, and compare the lengths of words being the 
algorithms output. The best algorithm should find the shortest 
synchronizing words. 

We did the experiment for n=2,3,4,5. We generated all 
synchronizing automata over binary alphabet with transition 
functions δ=(a1...an)(b1...bn), where ti=δ(i,t) and 
(a1...an)≤(b1...bn) in lexicographic order.  

Now, let us use two methods for estimating the quality of 
our algorithms. The first one is some kind of a “global 
method” – we take into consideration all results returned by 
the algorithm. The second one is focused only on cases in 
which the algorithm works optimal, i.e. the returned word is 
exactly a MSW. 

 
Method 1. We define m(n,ALG) in the following way: 
 

 ( )
( ( ) ( ))

( , ) ,
| ( ) |

A Syn n
ALG A MSW A

m n ALG
Syn n

∈

−
=

∑
 (9) 

where: 
- A is an automaton 
- n is the (fixed) number of states 
- ALG(A) is the length of synchronizing word for A 

found with algorithm ALG 
- Syn(n) is the set of all synchronizing n-state automata. 

 
The value m(n,ALG) says how much longer is a synchronizing 
word found by algorithm ALG than MSW length. For 
example, if ALG is the exponential, optimal algorithm which 
always finds the shortest synchronizing word, then 
m(n,ALG)=0. If for a given n and two algorithms A1 and A2 
we have m(n,A1)<m(n,A2), we say that A1 works better in 
finding synchronizing words for n-state automata. 
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Fig. 1 Comparision of algorithms 

 
The results of our experiment, in terms of m value from the 
Method 1., is presented in Fig. 1. We can see that the Cycle 
Algorithm is the least efficient one. Our two new algorithms 
work better than Eppstein’s greedy algorithms. The second 
one (with reward factor) is the most efficient one: for 
example, for 5-state automata it finds the synchronizing word 
of average length |MSW|+0.17, whereas the Cycle Algorithm 
finds the word of length |MSW|+0.66. 
 
Method 2. This is a very simple method; we just compute the 
ratio of optimal results returned by a given algorithm. Let us  
define the value k: 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1888

 

 

 ( )
[ ( ) ( )]

( , ) ,
| ( ) |

A Syn n
ALG A MSW A

k n ALG
Syn n

∈

=
=

∑
 (10) 

 
 
where [expression]=1 iff expression is true and 0 otherwise. If 
for two algorithms A1 and A2 we have k(n,A1)<k(n,A2), we 
can say that for n-state automata algorithm A2 works better 
because it finds more optimal synchronizing words (MSWs). 
 

 The results of the experiment are presented in Table I. The 
cell in n-th row and “ALG” column contains the value 
k(n,ALG). This method gives the same order of algorithms 
quality: Cycle Algorithm is the least efficient one, SynchroPL 
is the most efficient one. For example, SynchroPL gives the 
optimal result cases (i.e. it returns MSW) for 5-state automata 
in 87% of. Cycle algorithm does it only in 55% and Greedy – 
in 60% of cases. 

 

V. THE EXAMPLE 
Let us give an example which shows how SynchroPL 

algorithm works. We will use the algorithm to find the 
possibly shortest synchronizing word for automaton 
A0=(Q,A,δ), where Q={0,1,2,3,4}, A={a,b} and the transition 
function is presented in Table II. 

 
The SynchroPL algorithm works as it is described below. 

First, the pair automaton A2(A) is generated. Next, for each 
state s from A2(A) we compute W(s) and |s|. It can be done in 
a very simple way: we build the spanning tree for A2(A) 

where q0 is its root. This allows us to compute W(s) for any s. 
In order to compute d(s) we reverse the arrows in the spanning 
tree and use BFS procedure starting with q0. We define 
d(q0)=0 and in each step of BFS procedure, when we process 
the state q, we put d(q)=d(r)+1, where r is the parent of q in 

the spanning tree with reverse arrows. When all W(s) and d(s) 
values are computed, the algorithm builds the table with this 
values, of size n4. Such table for A0 is shown in Table III. The 
cell in the row s and column t contains ∆t(s,W(t)). 

Now, at every stage of the main loop we compute 
Φ2(W(p),q) for all p,q from the set of active states. We choose 
the state r (and the word W(r)), which minimalizes the value 
of Φ2.  

The computed values for A0 are presented in Table IV. The 

lowest values at every stage are bolded. At the first stage the 
lowest value is 5. This is the value for the state {0,1}, for 
which the corresponding word  W({0,1}) is a. We put w=w.a 
(at the beginning w is an empty word). Now, the set of active 
states is transformed according to the found word: 
Q←Q.a={0,2,3,4}. For active states 0,2,3,4 the minimal value 

of Φ2 is realized by the word bbababba related with state  
{2,3}. We put w=w.bbababba and again transform the set of 
active states: Q←Q.bbababba={0,3}. For state {0,3} we have 
only one possibility: the word W({0,3})=babba. Again, we 
concatenate w with babba and finally we obtain the 
synchronizing word w=abbababbababba. This word has the 
length 14. The greedy algorithm finds the word of length 17, 
w=abbaabbabbbababba. The MSW for A0 has the length 13: 
w=abbabbbababba. 

VI. CONCLUSION AND FUTURE WORK 
We presented two new algorithms for finding possibly the 

shortest synchronizing words for synchronizing automata. We 
presented two methods for evaluating the quality of the 
algorithms and we used them for Greedy, Cycle, SynchroP 
and SynchroPL algorithms. The numerical experiments 

TABLE I 
OPTIMAL RESULTS RATIO 

n 

Number 
of 

synchr. 
automata 

Cycle 
(%) 

Greedy 
(%) 

SynchroP 
(%) 

SynchroPL 
(%) 

2 5 5 
(100) 

5 
(100) 

5 
(100) 

5 
(100) 

3 270 208 
(77) 

225 
(83) 

270 
(100) 

270 
(100) 

4 25728 17674 
(69) 

18465 
(72) 

24341 
(95) 

24910 
(97) 

5 4031380 2221524 
(55) 

2423148 
(60) 

3428673 
(85) 

3510181 
(87) 

6 93571956
0 

430721082 
(46) 

476010680 
(51) 

705120829 
(75) 

719721209 
(77) 

 

TABLE II 
TRANSITION FUNCTION FOR A0 

δ 0 1 2 3 4 
a 0 0 3 2 4 
b 3 0 1 4 2 
 

TABLE III 
TABLE  OF  D  FUNCTION  USED  BY  SYNCHROPL 

n 01 02 03 04 12 13 14 23 24 34 

01 0 -1 8 4 5 -1 8 3 2 -1 
02 -1 0 3 3 0 3 3 -1 3 2 
03 1 4 0 -5 -2 -5 -1 0 -1 4 
04 0 -4 -4 0 -1 -4 0 -4 0 0 
12 3 -2 -2 2 0 7 -2 7 4 2 
13 -1 2 2 -2 2 0 -2 2 1 2 
14 2 -2 -3 -2 -2 -2 0 2 -1 2 
23 0 1 1 1 1 1 -3 0 -3 -3 
24 1 2 1 6 2 1 -3 -3 0 2 
34 -1 0 1 -4 0 1 1 -4 1 0 
 

TABLE IV 
PHI VALUES COMPUTED BY SYNCHROPL 

step 
(act. 

states) 
01 02 03 04 12 13 14 23 24 34 

1 
(01234) 5 6 12 12 7 8 8 10 9 10 

2 
(0234)  9 7 10    -4 3 5 

3 
(03)   0        
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indicated that the SynchroP and SynchroPL work better than 
well-known greedy algorithms. 

We can try to modify the Φ function from equation (7) and 
check if it improves the algorithm quality. For example, one 
could add the weights for two components of  Φ2 - ∆ and the 
reward factor. The heuristics here would be as follows: if 
there are a few active states, then in the current stage of  the 
algorithm we should emphasize minimizing the length of 
synchronizing subword rather than minimize the ∆ value. If 
there are many active states, it is important to minimize the ∆ 
component because in later stages we will emphasize the 
length of synchronizing word (there will be fewer states than 
before). Minimizing the ∆ component allows us to increase 
the possibility that in future configuration we will find short 
synchronizing subwords. In the greedy algorithm only the 
length of synchronizing subword is taken into consideration. 
Experiments show that minimizing the ∆ component allows us 
to improve the quality of an algorithm. It would be interesting 
to check if a fusion of this two approaches gives better results 
than SynchroPL. 
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